Suppr超能文献

利用人工智能和患者元数据开发一种用于皮肤癌检测的新型风险评分。

Leveraging AI and patient metadata to develop a novel risk score for skin cancer detection.

机构信息

School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK.

Check4Cancer Ltd., Cambridge, UK.

出版信息

Sci Rep. 2024 Sep 6;14(1):20842. doi: 10.1038/s41598-024-71244-2.

Abstract

Melanoma of the skin is the 17th most common cancer worldwide. Early detection of suspicious skin lesions (melanoma) can increase 5-year survival rates by 20%. The 7-point checklist (7PCL) has been extensively used to suggest urgent referrals for patients with a possible melanoma. However, the 7PCL method only considers seven meta-features to calculate a risk score and is only relevant for patients with suspected melanoma. There are limited studies on the extensive use of patient metadata for the detection of all skin cancer subtypes. This study investigates artificial intelligence (AI) models that utilise patient metadata consisting of 23 attributes for suspicious skin lesion detection. We have identified a new set of most important risk factors, namely "C4C risk factors", which is not just for melanoma, but for all types of skin cancer. The performance of the C4C risk factors for suspicious skin lesion detection is compared to that of the 7PCL and the Williams risk factors that predict the lifetime risk of melanoma. Our proposed AI framework ensembles five machine learning models and identifies seven new skin cancer risk factors: lesion pink, lesion size, lesion colour, lesion inflamed, lesion shape, lesion age, and natural hair colour, which achieved a sensitivity of and a specificity of in detecting suspicious skin lesions when evaluated using the metadata of 53,601 skin lesions collected from different skin cancer diagnostic clinics across the UK, significantly outperforming the 7PCL-based method (sensitivity , specificity ) and the Williams risk factors (sensitivity , specificity ). Furthermore, through weighting the seven new risk factors we came up with a new risk score, namely "C4C risk score", which alone achieved a sensitivity of and a specificity of , significantly outperforming the 7PCL-based risk score (sensitivity , specificity ) and the Williams risk score (sensitivity , specificity ). Finally, fusing the C4C risk factors with the 7PCL and Williams risk factors achieved the best performance, with a sensitivity of and a specificity of . We believe that fusing these newly found risk factors and new risk score with image data will further boost the AI model performance for suspicious skin lesion detection. Hence, the new set of skin cancer risk factors has the potential to be used to modify current skin cancer referral guidelines for all skin cancer subtypes, including melanoma.

摘要

皮肤黑色素瘤是全球第 17 常见的癌症。早期发现可疑皮肤病变(黑色素瘤)可将 5 年生存率提高 20%。7 点清单(7PCL)已被广泛用于建议疑似黑色素瘤患者紧急转诊。然而,7PCL 方法仅考虑七个元特征来计算风险评分,并且仅与疑似黑色素瘤患者相关。关于利用患者元数据检测所有皮肤癌亚型的广泛应用的研究有限。本研究调查了利用包含 23 个属性的可疑皮肤病变患者元数据的人工智能(AI)模型。我们已经确定了一组新的最重要的危险因素,即“C4C 危险因素”,这些危险因素不仅适用于黑色素瘤,也适用于所有类型的皮肤癌。C4C 危险因素用于可疑皮肤病变检测的性能与 7PCL 和预测黑色素瘤终生风险的威廉姆斯危险因素进行了比较。我们提出的 AI 框架集成了五个机器学习模型,并确定了七个新的皮肤癌风险因素:病变的粉红色、病变的大小、病变的颜色、病变的炎症、病变的形状、病变的年龄和自然毛发的颜色,在使用从英国各地不同皮肤癌诊断诊所收集的 53601 个皮肤病变的元数据进行评估时,该模型对可疑皮肤病变的检测灵敏度为 ,特异性为 ,明显优于基于 7PCL 的方法(灵敏度 ,特异性 )和威廉姆斯危险因素(灵敏度 ,特异性 )。此外,通过加权这七个新的风险因素,我们提出了一个新的风险评分,即“C4C 风险评分”,该评分的灵敏度为 ,特异性为 ,明显优于基于 7PCL 的风险评分(灵敏度 ,特异性 )和威廉姆斯风险评分(灵敏度 ,特异性 )。最后,融合 C4C 危险因素、7PCL 和威廉姆斯危险因素实现了最佳性能,灵敏度为 ,特异性为 。我们相信,将这些新发现的风险因素和新的风险评分与图像数据融合,将进一步提高可疑皮肤病变检测的 AI 模型性能。因此,这组新的皮肤癌风险因素有可能被用于修改包括黑色素瘤在内的所有皮肤癌亚型的当前皮肤癌转诊指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b7/11379912/92fcc02e0742/41598_2024_71244_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验