Tanade Cyrus, Chen S James, Leopold Jane A, Randles Amanda
Department of Biomedical Engineering, Duke University, Durham, NC, United States.
Department of Medicine, University of Colorado, Aurora, CO, United States.
Front Med Technol. 2022 Dec 6;4:1034801. doi: 10.3389/fmedt.2022.1034801. eCollection 2022.
Personalized hemodynamic models can accurately compute fractional flow reserve (FFR) from coronary angiograms and clinical measurements (FFR ), but obtaining patient-specific data could be challenging and sometimes not feasible. Understanding which measurements need to be patient-tuned vs. patient-generalized would inform models with minimal inputs that could expedite data collection and simulation pipelines.
To determine the minimum set of patient-specific inputs to compute FFR using invasive measurement of FFR (FFR ) as gold standard.
Personalized coronary geometries ( ) were derived from patient coronary angiograms. A computational fluid dynamics framework, FFR , was parameterized with patient-specific inputs: coronary geometry, stenosis geometry, mean arterial pressure, cardiac output, heart rate, hematocrit, and distal pressure location. FFR was validated against FFR and used as the baseline to elucidate the impact of uncertainty on personalized inputs through global uncertainty analysis. FFR was created by only incorporating the most sensitive inputs and FFR additionally included patient-specific distal location.
FFR was validated against FFR via correlation ( , ), agreement (mean difference: ), and diagnostic performance (sensitivity: 89.5%, specificity: 93.6%, PPV: 89.5%, NPV: 93.6%, AUC: 0.95). FFR provided identical diagnostic performance with FFR . Compared to FFR vs. FFR , FFR vs. FFR had decreased correlation ( , ), improved agreement (mean difference: ), and comparable diagnostic performance (sensitivity: 79.0%, specificity: 90.3%, PPV: 83.3%, NPV: 87.5%, AUC: 0.90).
Streamlined models could match the diagnostic performance of the baseline with a full gamut of patient-specific measurements. Capturing coronary hemodynamics depended most on accurate geometry reconstruction and cardiac output measurement.
个性化血流动力学模型能够根据冠状动脉造影和临床测量准确计算血流储备分数(FFR),但获取患者特异性数据可能具有挑战性,有时甚至不可行。了解哪些测量需要针对患者进行调整,哪些可以采用通用患者数据,将为模型提供最少的输入信息,从而加快数据收集和模拟流程。
以有创测量的血流储备分数(FFR)作为金标准,确定计算FFR所需的最少患者特异性输入集。
从患者冠状动脉造影中获取个性化冠状动脉几何结构。使用患者特异性输入参数对计算流体动力学框架FFR进行参数化:冠状动脉几何结构、狭窄几何结构、平均动脉压、心输出量、心率、血细胞比容和远端压力位置。通过与FFR进行对比验证FFR,并将其用作基线,通过全局不确定性分析来阐明不确定性对个性化输入的影响。仅纳入最敏感输入创建FFR,FFR还额外纳入了患者特异性远端位置。
通过相关性( , )、一致性(平均差异: )和诊断性能(敏感性:89.5%,特异性:93.6%,阳性预测值:89.5%,阴性预测值:93.6%,曲线下面积:0.95)对FFR与FFR进行验证。FFR与FFR具有相同的诊断性能。与FFR对比FFR相比,FFR对比FFR的相关性降低( , ),一致性提高(平均差异: ),诊断性能相当(敏感性:79.0%,特异性:90.3%,阳性预测值:83.3%,阴性预测值:87.5%,曲线下面积:0.90)。
简化模型能够在采用全套患者特异性测量时与基线的诊断性能相匹配。冠状动脉血流动力学的获取最依赖于准确的几何结构重建和心输出量测量。