USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St, Peoria, IL, 61604, USA.
USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Rd. Ames, IA, 50011, USA.
BMC Microbiol. 2024 Sep 6;24(1):326. doi: 10.1186/s12866-024-03480-5.
The genus Fusarium poses significant threats to food security and safety worldwide because numerous species of the fungus cause destructive diseases and/or mycotoxin contamination in crops. The adverse effects of climate change are exacerbating some existing threats and causing new problems. These challenges highlight the need for innovative solutions, including the development of advanced tools to identify targets for control strategies.
In response to these challenges, we developed the Fusarium Protein Toolkit (FPT), a web-based tool that allows users to interrogate the structural and variant landscape within the Fusarium pan-genome. The tool displays both AlphaFold and ESMFold-generated protein structure models from six Fusarium species. The structures are accessible through a user-friendly web portal and facilitate comparative analysis, functional annotation inference, and identification of related protein structures. Using a protein language model, FPT predicts the impact of over 270 million coding variants in two of the most agriculturally important species, Fusarium graminearum and F. verticillioides. To facilitate the assessment of naturally occurring genetic variation, FPT provides variant effect scores for proteins in a Fusarium pan-genome based on 22 diverse species. The scores indicate potential functional consequences of amino acid substitutions and are displayed as intuitive heatmaps using the PanEffect framework.
FPT fills a knowledge gap by providing previously unavailable tools to assess structural and missense variation in proteins produced by Fusarium. FPT has the potential to deepen our understanding of pathogenic mechanisms in Fusarium, and aid the identification of genetic targets for control strategies that reduce crop diseases and mycotoxin contamination. Such targets are vital to solving the agricultural problems incited by Fusarium, particularly evolving threats resulting from climate change. Thus, FPT has the potential to contribute to improving food security and safety worldwide.
由于许多种真菌会导致农作物发生破坏性疾病和/或真菌毒素污染,因此镰刀菌属对全球粮食安全和安全构成重大威胁。气候变化的不利影响正在加剧一些现有威胁,并引发新的问题。这些挑战突出表明需要创新的解决方案,包括开发先进的工具来确定控制策略的目标。
为了应对这些挑战,我们开发了镰刀菌蛋白工具包(FPT),这是一个基于网络的工具,允许用户研究镰刀菌泛基因组中的结构和变体景观。该工具显示了来自六个镰刀菌物种的 AlphaFold 和 ESMFold 生成的蛋白质结构模型。这些结构可以通过用户友好的网络门户访问,有助于进行比较分析、功能注释推断和相关蛋白质结构的识别。使用蛋白质语言模型,FPT 预测了在两个最重要的农业物种,禾谷镰刀菌和 F. verticillioides 中超过 2.7 亿个编码变异的影响。为了促进对自然发生遗传变异的评估,FPT 为基于 22 个不同物种的镰刀菌泛基因组中的蛋白质提供了变体效应评分。这些分数表示氨基酸取代的潜在功能后果,并使用 PanEffect 框架以直观的热图形式显示。
FPT 通过提供以前无法获得的工具来评估镰刀菌产生的蛋白质的结构和错义变异,填补了知识空白。FPT 有可能加深我们对镰刀菌致病机制的理解,并有助于确定用于减少作物病害和真菌毒素污染的控制策略的遗传靶标。这些靶标对于解决由镰刀菌引起的农业问题至关重要,特别是由于气候变化而产生的不断演变的威胁。因此,FPT 有可能有助于提高全球粮食安全和安全。