Ye Wei, Zhang Ye, Chen Liang, Wu Fangfang, Yao Yuanhui, Wang Wei, Zhu Genping, Jia Gan, Bai Zhongchao, Dou Shixue, Gao Peng, Wang Nana, Wang Guoxiu
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202410105. doi: 10.1002/anie.202410105. Epub 2024 Oct 28.
The direct coupling of nitrate ions and carbon dioxide for urea synthesis presents an appealing alternative to the Bosch-Meiser process in industry. The simultaneous activation of carbon dioxide and nitrate, however, as well as efficient C-N coupling on single active site, poses significant challenges. Here, we propose a novel metal/hydroxide heterostructure strategy based on synthesizing an Ag-CuNi(OH) composite to cascade carbon dioxide and nitrate reduction reactions for urea electrosynthesis. The strongly coupled metal/hydroxide heterostructure interface integrates two distinct sites for carbon dioxide and nitrate activation, and facilitates the coupling of *CO (on silver, where * denotes an active site) and *NH (on hydroxide) for urea formation. Moreover, the strongly coupled interface optimizes the water splitting process and facilitates the supply of active hydrogen atoms, thereby expediting the deoxyreduction processes essential for urea formation. Consequently, our Ag-CuNi(OH) composite delivers a high urea yield rate of 25.6 mmol g h and high urea Faradaic efficiency of 46.1 %, as well as excellent cycling stability. This work provides new insights into the design of dual-site catalysts for C-N coupling, considering their role on the interface.
在工业中,将硝酸根离子和二氧化碳直接偶联用于尿素合成是一种有吸引力的替代博世-迈泽尔工艺的方法。然而,同时活化二氧化碳和硝酸盐,以及在单一活性位点上实现高效的C-N偶联,带来了重大挑战。在此,我们提出了一种基于合成Ag-CuNi(OH)复合材料的新型金属/氢氧化物异质结构策略,用于串联二氧化碳和硝酸盐还原反应以进行尿素电合成。强耦合的金属/氢氧化物异质结构界面整合了用于二氧化碳和硝酸盐活化的两个不同位点,并促进了CO(在银上,其中表示活性位点)和*NH(在氢氧化物上)偶联以形成尿素。此外,强耦合界面优化了水分解过程并促进了活性氢原子的供应,从而加快了尿素形成所必需的脱氧还原过程。因此,我们的Ag-CuNi(OH)复合材料实现了25.6 mmol g h的高尿素产率和46.1%的高尿素法拉第效率,以及出色的循环稳定性。这项工作考虑了双位点催化剂在界面上的作用,为C-N偶联双位点催化剂的设计提供了新的见解。