Suppr超能文献

预期的变异性会增强预测性学习的泛化能力。

Anticipated variability increases generalization of predictive learning.

作者信息

Ram Hadar, Grinfeld Guy, Liberman Nira

机构信息

Bar-Ilan University, Tel Aviv, Israel.

Tel Aviv University, Tel Aviv, Israel.

出版信息

NPJ Sci Learn. 2024 Sep 7;9(1):55. doi: 10.1038/s41539-024-00269-z.

Abstract

We show that learners generalized more broadly around the learned stimulus when they expected more variability between the learning set and the generalization set, as well as within the generalization set. Experiments 1 and 3 used a predictive learning task and demonstrated border perceptual generalization both when expected variability was manipulated explicitly via instructions (Experiment 1), and implicitly by increasing temporal distance to the anticipated application of learning (Experiment 3). Experiment 2 showed that expecting to apply learning in the more distant future increases expected variability in the generalization set. We explain the relation between expected variability and generalization as an accuracy-applicability trade-off: when learners anticipate more variable generalization targets, they "cast a wider net" during learning, by attributing the outcome to a broader range of stimuli. The use of more abstract, broader categories when anticipating a more distant future application aligns with Construal Level Theory of psychological distance.

摘要

我们发现,当学习者预期学习集与泛化集之间以及泛化集内部存在更大的变异性时,他们会围绕所学刺激进行更广泛的泛化。实验1和实验3使用了预测性学习任务,并证明了无论是通过指令明确操纵预期变异性(实验1),还是通过增加与预期学习应用的时间距离来隐性操纵预期变异性(实验3),都会出现边界感知泛化。实验2表明,预期在更遥远的未来应用学习会增加泛化集中的预期变异性。我们将预期变异性与泛化之间的关系解释为一种准确性 - 适用性的权衡:当学习者预期泛化目标更具变异性时,他们在学习过程中会“撒更大的网”,即将结果归因于更广泛的刺激范围。在预期更遥远的未来应用时使用更抽象、更宽泛的类别,这与心理距离的解释水平理论相一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0f/11380665/92f21ee27aef/41539_2024_269_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验