Suppr超能文献

预测脑瘫、中风患者及老年人在使用和不使用辅助设备行走时的稳态代谢功率。

Predicting Steady-State Metabolic Power in Cerebral Palsy, Stroke, and the Elderly During Walking With and Without Assistive Devices.

作者信息

Harshe Karl, Conner Benjamin C, Lerner Zachary F

机构信息

Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86001, USA.

College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, USA.

出版信息

Ann Biomed Eng. 2025 Jan;53(1):99-108. doi: 10.1007/s10439-024-03614-w. Epub 2024 Sep 8.

Abstract

PURPOSE

Individuals with walking impairment, such as those with cerebral palsy, often face challenges in leading physically active lives due to the high energy cost of movement. Assistive devices like powered exoskeletons aim to alleviate this burden and improve mobility. Traditionally, optimizing the effectiveness of such devices has relied on time-consuming laboratory-based measurements of energy expenditure, which may not be feasible for some patient populations. To address this, our study aimed to enhance the state-of-the-art predictive model for estimating steady-state metabolic rate from 2-min walking trials to include individuals with and without walking disabilities and for a variety of terrains and wearable device conditions.

METHODS

Using over 200 walking trials collected from eight prior exoskeleton-related studies, we trained a simple linear machine learning model to predict metabolic power at steady state based on condition-specific factors, such as whether the trial was conducted on a treadmill (level or incline) or outdoors, as well as demographic information, such as the participant's weight or presence of walking impairment, and 2 minutes of metabolic data.

RESULTS

We demonstrated the ability to predict steady-state metabolic rate to within an accuracy of 4.71 ± 2.7% on average across all walking conditions and patient populations, including with assistive devices and on different terrains.

CONCLUSION

This work seeks to unlock the use of in-the-loop optimization of wearable assistive devices in individuals with limited walking capacity. A freely available MATLAB application allows other researchers to easily apply our model.

摘要

目的

行走功能受损的个体,如脑瘫患者,由于运动的能量消耗高,在积极参与体育活动方面常常面临挑战。动力外骨骼等辅助设备旨在减轻这一负担并改善行动能力。传统上,优化此类设备的有效性依赖于在实验室进行的耗时的能量消耗测量,而这对某些患者群体可能并不可行。为解决这一问题,我们的研究旨在改进最先进的预测模型,该模型用于根据2分钟的步行试验估计稳态代谢率,以纳入有或没有行走障碍的个体,并适用于各种地形和可穿戴设备条件。

方法

我们使用从八项先前与外骨骼相关的研究中收集的200多次步行试验数据,训练了一个简单的线性机器学习模型,以根据特定条件因素(如试验是在跑步机上(水平或倾斜)还是在户外进行)以及人口统计学信息(如参与者的体重或是否存在行走障碍)和2分钟的代谢数据来预测稳态代谢功率。

结果

我们证明了在所有步行条件和患者群体中,包括使用辅助设备和在不同地形上,预测稳态代谢率的平均准确率可达4.71±2.7%。

结论

这项工作旨在实现对行走能力有限的个体使用可穿戴辅助设备进行在线优化。一个免费的MATLAB应用程序使其他研究人员能够轻松应用我们的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验