Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK.
Nat Commun. 2024 Sep 8;15(1):7853. doi: 10.1038/s41467-024-52149-0.
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
腺相关病毒 (AAV) 是基础科学和临床治疗学的基本基因传递工具。然而,缺乏机制上的了解,特别是对于通过定向进化创建的工程载体,可能会阻碍它们的应用。在这里,我们采用一种无偏的人类细胞微阵列平台来确定天然和工程 AAV 的细胞外和细胞表面相互作用组。我们确定了 AAV9 衣壳与人类白细胞介素 3 (IL3) 之间自然进化和血清型特异性的相互作用,可能在宿主免疫调节中发挥作用,以及实验室进化的低密度脂蛋白受体相关蛋白 6 (LRP6) 相互作用,这些相互作用特异性针对经过基因工程改造的衣壳,在静脉注射后可增强非人类灵长类动物的血脑屏障穿透性。无偏的细胞微阵列筛选方法还使我们能够识别工程化的脑富集 AAV 衣壳的非靶组织结合相互作用,这些相互作用可能会影响载体对周围器官的趋向性和副作用。我们对衣壳-相互作用体复合物的冷冻电子断层扫描和 AlphaFold 建模揭示了 LRP6 和 IL3 结合位点。这些结果允许在不同的生物体中自信地应用工程化的 AAV,并为非侵入性治疗性递送到大脑的改进的病毒和非病毒载体的基于目标的工程学开启了未来。