Suppr超能文献

压力诱导产生用于可持续氢转移的异质电催化金属氢化物表面。

Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer.

作者信息

Luo Laihao, Liu Xinyan, Zhao Xinyu, Zhang Xinyan, Peng Hong-Jie, Ye Ke, Jiang Kun, Jiang Qiu, Zeng Jie, Zheng Tingting, Xia Chuan

机构信息

School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.

出版信息

Nat Commun. 2024 Sep 8;15(1):7845. doi: 10.1038/s41467-024-52228-2.

Abstract

Metal hydrides are crucial intermediates in numerous catalytic reactions. Intensive efforts have been dedicated to constructing molecular metal hydrides, where toxic precursors and delicate mediators are usually involved. Herein, we demonstrate a facile pressure-induced methodology to generate a cost-effective heterogeneous electrocatalytic metal hydride surface for sustainable hydrogen transfer. Taking carbon dioxide (CO) electroreduction as a model system and zinc (Zn), a well-known carbon monoxide (CO)-selective catalyst, as a model catalyst, we showcase a homogeneous-type hydrogen atom transfer process induced by heterogeneous hydride surfaces, enabling direct hydrogenation pathways traditionally considered "prohibited". Specifically, the maximal Faradaic efficiency for formate is enhanced by ~fivefold to 83% under ambient conditions. Experimental and theoretical analyses reveal that unlike the distal hydrogenation route for CO to CO over pristine Zn, the Zn hydride surface enables direct hydrogenation at the carbon site of CO to form formate. This work provides a promising material platform for sustainable synthesis.

摘要

金属氢化物是众多催化反应中的关键中间体。人们致力于构建分子金属氢化物,其中通常会涉及有毒前驱体和精细的介质。在此,我们展示了一种简便的压力诱导方法,用于生成具有成本效益的非均相电催化金属氢化物表面,以实现可持续的氢转移。以二氧化碳(CO)电还原作为模型体系,以众所周知的一氧化碳(CO)选择性催化剂锌(Zn)作为模型催化剂,我们展示了由非均相氢化物表面诱导的均相型氢原子转移过程,实现了传统上被认为“禁止”的直接氢化途径。具体而言,在环境条件下,甲酸盐的最大法拉第效率提高了约五倍,达到83%。实验和理论分析表明,与原始Zn上CO加氢生成CO的远端加氢途径不同,氢化锌表面能够使CO在碳位点直接加氢生成甲酸盐。这项工作为可持续合成提供了一个有前景的材料平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f9/11381543/b50b10d988fe/41467_2024_52228_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验