Chen Siru, Cui Ming, Yin Zehao, Xiong Jiabin, Mi Liwei, Li Yanqiang
Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China.
State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China.
ChemSusChem. 2021 Jan 7;14(1):73-93. doi: 10.1002/cssc.202002098. Epub 2020 Oct 29.
Single-atom catalysts (SACs) have attracted increasing research interests owing to their unique electronic structures, quantum size effects and maximum utilization rate of atoms. Metal organic frameworks (MOFs) are good candidates to prepare SACs owing to the atomically dispersed metal nodes in MOFs and abundant N and C species to stabilize the single atoms. In addition, the distance of adjacent metal atoms can be turned by adjusting the size of ligands and adding volatile metal centers to promote the formation of isolated metal atoms. Moreover, the diverse metal centers in MOFs can promote the preparation of dual-atom catalysts (DACs) to improve the metal loading and optimize the electronic structures of the catalysts. The applications of MOFs derived SACs and DACs for electrocatalysis, including oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction and nitrogen reduction reaction are systematically summarized in this Review. The corresponding synthesis strategies, atomic structures and electrocatalytic performances of the catalysts are discussed to provide a deep understanding of MOFs-based atomic electrocatalysts. The catalytic mechanisms of the catalysts are presented, and the crucial challenges and perspectives are proposed to promote further design and applications of atomic electrocatalysts.
单原子催化剂(SACs)因其独特的电子结构、量子尺寸效应和原子的最大利用率而吸引了越来越多的研究兴趣。金属有机框架(MOFs)是制备SACs的良好候选材料,这是由于MOFs中原子分散的金属节点以及丰富的N和C物种来稳定单原子。此外,相邻金属原子的间距可以通过调整配体大小和添加挥发性金属中心来改变,以促进孤立金属原子的形成。此外,MOFs中多样的金属中心可以促进双原子催化剂(DACs)的制备,以提高金属负载量并优化催化剂的电子结构。本综述系统地总结了MOFs衍生的SACs和DACs在电催化中的应用,包括氧还原反应、析氧反应、析氢反应、二氧化碳还原反应和氮还原反应。讨论了催化剂相应的合成策略、原子结构和电催化性能,以深入了解基于MOFs的原子电催化剂。阐述了催化剂的催化机理,并提出了关键挑战和展望,以促进原子电催化剂的进一步设计和应用。