Kitagawa Jiro, Shintaku Daiki
Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan.
ACS Omega. 2024 Aug 22;9(35):37197-37204. doi: 10.1021/acsomega.4c04556. eCollection 2024 Sep 3.
We report the magnetic properties of the as-cast high-entropy alloy (HEA) FeCoNiTi, characterized by a dual phase comprising the face-centered cubic (fcc) and hexagonal C14 Laves phases. The HEA manifests three distinct ferromagnetic orderings at 1084, 214, and 168 K. The emergence of the 214 K transition is attributed to the influence of the C14 phase. The high-temperature ordering at 1084 K is associated with the fcc phase, which exhibits an additional ferromagnetic ordering at 168 K. The coercive field of the fcc phase attains 667 Oe at 400 K. Electronic structure calculations conducted for both phases substantiate the presence of ferromagnetic ground states. Comparative analyses between experimental and theoretical values are undertaken in the context of saturation magnetization. A comprehensive discussion is presented, delving into the origin of the relatively high coercive field observed at high temperatures in the fcc phase.
我们报道了铸态高熵合金(HEA)FeCoNiTi的磁性,其特征在于由面心立方(fcc)和六方C14 Laves相组成的双相结构。该高熵合金在1084 K、214 K和168 K时表现出三种不同的铁磁有序状态。214 K转变的出现归因于C14相的影响。1084 K的高温有序与fcc相相关,该fcc相在168 K时表现出额外的铁磁有序。fcc相的矫顽场在400 K时达到667 Oe。对两个相进行的电子结构计算证实了铁磁基态的存在。在饱和磁化强度的背景下对实验值和理论值进行了比较分析。本文进行了全面的讨论,深入探讨了在fcc相中高温下观察到的相对较高矫顽场的起源。