Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Department of Internal Medicine, BH10-642, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
Cardiovasc Diabetol. 2023 Aug 4;22(1):200. doi: 10.1186/s12933-023-01939-9.
Various predictive models have been developed for predicting the incidence of coronary heart disease (CHD), but none of them has had optimal predictive value. Although these models consider diabetes as an important CHD risk factor, they do not consider insulin resistance or triglyceride (TG). The unsatisfactory performance of these prediction models may be attributed to the ignoring of these factors despite their proven effects on CHD. We decided to modify standard CHD predictive models through machine learning to determine whether the triglyceride-glucose index (TyG-index, a logarithmized combination of fasting blood sugar (FBS) and TG that demonstrates insulin resistance) functions better than diabetes as a CHD predictor.
Two-thousand participants of a community-based Iranian population, aged 20-74 years, were investigated with a mean follow-up of 9.9 years (range: 7.6-12.2). The association between the TyG-index and CHD was investigated using multivariate Cox proportional hazard models. By selecting common components of previously validated CHD risk scores, we developed machine learning models for predicting CHD. The TyG-index was substituted for diabetes in CHD prediction models. All components of machine learning models were explained in terms of how they affect CHD prediction. CHD-predicting TyG-index cut-off points were calculated.
The incidence of CHD was 14.5%. Compared to the lowest quartile of the TyG-index, the fourth quartile had a fully adjusted hazard ratio of 2.32 (confidence interval [CI] 1.16-4.68, p-trend 0.04). A TyG-index > 8.42 had the highest negative predictive value for CHD. The TyG-index-based support vector machine (SVM) performed significantly better than diabetes-based SVM for predicting CHD. The TyG-index was not only more important than diabetes in predicting CHD; it was the most important factor after age in machine learning models.
We recommend using the TyG-index in clinical practice and predictive models to identify individuals at risk of developing CHD and to aid in its prevention.
已经开发出各种预测模型来预测冠心病(CHD)的发生率,但没有一个具有最佳的预测价值。尽管这些模型将糖尿病视为 CHD 的一个重要危险因素,但它们没有考虑胰岛素抵抗或甘油三酯(TG)。这些预测模型表现不佳的原因可能是忽略了这些因素,尽管这些因素已被证明对 CHD 有影响。我们决定通过机器学习修改标准 CHD 预测模型,以确定 TG-葡萄糖指数(TyG-index,空腹血糖(FBS)和 TG 的对数组合,可显示胰岛素抵抗)是否比糖尿病作为 CHD 预测指标更好。
对 2000 名来自伊朗社区的参与者进行了调查,年龄在 20-74 岁之间,平均随访 9.9 年(范围:7.6-12.2)。使用多变量 Cox 比例风险模型研究 TyG-index 与 CHD 之间的关系。通过选择先前验证的 CHD 风险评分的常见成分,我们开发了用于预测 CHD 的机器学习模型。在 CHD 预测模型中用 TyG-index 替代糖尿病。以影响 CHD 预测的方式解释机器学习模型的所有组成部分。计算预测 CHD 的 TyG-index 截断点。
CHD 的发病率为 14.5%。与 TyG-index 的最低四分位数相比,第四四分位数的全调整风险比为 2.32(95%置信区间 [CI] 1.16-4.68,p-trend 0.04)。TyG-index>8.42 对 CHD 具有最高的阴性预测值。基于 TyG-index 的支持向量机(SVM)在预测 CHD 方面明显优于基于糖尿病的 SVM。在预测 CHD 方面,TyG-index 不仅比糖尿病更重要;它还是机器学习模型中仅次于年龄的最重要因素。
我们建议在临床实践和预测模型中使用 TyG-index 来识别有发生 CHD 风险的个体,并帮助预防 CHD。