Suppr超能文献

利用机器学习技术降低中国泰州胃癌筛查成本的可行性研究。

A feasibility study on utilizing machine learning technology to reduce the costs of gastric cancer screening in Taizhou, China.

作者信息

Yan Si-Yan, Fu Xin-Yu, Tang Shen-Ping, Qi Rong-Bin, Liang Jia-Wei, Mao Xin-Li, Ye Li-Ping, Li Shao-Wei

机构信息

Taizhou Hospital of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China.

Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.

出版信息

Digit Health. 2024 Sep 5;10:20552076241277713. doi: 10.1177/20552076241277713. eCollection 2024 Jan-Dec.

Abstract

AIM

To optimize gastric cancer screening score and reduce screening costs using machine learning models.

METHODS

This study included 228,634 patients from the Taizhou Gastric Cancer Screening Program. We used three machine learning models to optimize Li's gastric cancer screening score: Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), and Deep Learning (DL). The performance of the binary classification models was evaluated using the area under the curve (AUC) and area under the precision-recall curve (AUCPR).

RESULTS

In the binary classification model used to distinguish low-risk and moderate- to high-risk patients, the AUC in the GBM, DRF, and DL full models were 0.9994, 0.9982, and 0.9974, respectively, and the AUCPR was 0.9982, 0.9949, and 0.9918, respectively. Excluding IgG antibody, pepsinogen I, and pepsinogen II, the AUC in the GBM, DRF, and DL models were 0.9932, 0.9879, and 0.9900, respectively, and the AUCPR was 0.9835, 0.9716, and 0.9752, respectively. Remodel after removing variables IgG, PGI, PGII, and G-17, the AUC in GBM, DRF, and DL was 0.8524, 0.8482, 0.8477, and AUCPR was 0.6068, 0.6008, and 0.5890, respectively. When constructing a tri-classification model, we discovered that none of the three machine learning models could effectively distinguish between patients at intermediate and high risk for gastric cancer (F1 scores in the GBM model for the low, medium and high risk: 0.9750, 0.9193, 0.5334, respectively; F1 scores in the DRF model for low, medium, and high risks: 0.9888, 0.9479, 0.6694, respectively; F1 scores in the DL model for low, medium, and high risks: 0.9812, 0.9216, 0.6394, respectively).

CONCLUSION

We concluded that gastric cancer screening indicators could be optimized when distinguishing low-risk and moderate to high-risk populations, and detecting gastrin-17 alone can achieve a good discriminative effect, thus saving huge expenditures.

摘要

目的

使用机器学习模型优化胃癌筛查评分并降低筛查成本。

方法

本研究纳入了来自泰州胃癌筛查项目的228,634名患者。我们使用三种机器学习模型来优化李式胃癌筛查评分:梯度提升机(GBM)、分布式随机森林(DRF)和深度学习(DL)。使用曲线下面积(AUC)和精确召回率曲线下面积(AUCPR)评估二分类模型的性能。

结果

在用于区分低风险和中高风险患者的二分类模型中,GBM、DRF和DL全模型的AUC分别为0.9994、0.9982和0.9974,AUCPR分别为0.9982、0.9949和0.9918。排除IgG抗体、胃蛋白酶原I和胃蛋白酶原II后,GBM、DRF和DL模型的AUC分别为0.9932、0.9879和0.9900,AUCPR分别为0.9835、0.9716和0.9752。去除变量IgG、PGI、PGII和G-17后重新建模,GBM、DRF和DL的AUC分别为0.8524、0.8482、0.8477,AUCPR分别为0.6068、0.6008和0.5890。在构建三分类模型时,我们发现三种机器学习模型均无法有效区分胃癌中高风险患者(GBM模型中低、中、高风险的F1分数分别为:0.9750、0.9193、0.5334;DRF模型中低、中、高风险的F1分数分别为:0.9888、0.9479、0.6694;DL模型中低、中、高风险的F1分数分别为:0.9812、0.9216、0.6394)。

结论

我们得出结论,在区分低风险和中高风险人群时,胃癌筛查指标可以优化,单独检测胃泌素-17可取得良好的判别效果,从而节省巨额开支。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad1/11378168/9f642f92448e/10.1177_20552076241277713-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验