Ho Y T Candace, Zhao Yongwei, Tailhades Julien, Cryle Max J
Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
Methods Mol Biol. 2023;2670:187-206. doi: 10.1007/978-1-0716-3214-7_9.
Glycopeptide antibiotics (GPAs) are important and medically relevant peptide natural products. In the context of antimicrobial resistance (AMR), understanding and manipulating GPA biosynthesis is essential to discover new bioactive derivatives of these peptides. Among all the enzymatic steps in GPA biosynthesis, the most complex occurs during the maturation (cross-linking) of the peptide aglycone. This is achieved-while the peptide remains attached to the nonribosomal peptide synthetase (NRPS) machinery-through the action of a cytochrome P450 (CYP450 or Oxy)-mediated cyclization cascade. There is great interest in understanding the formation of the cross-links between the aromatic side chains in GPAs as this process leads to the cup-shaped aglycone, which is itself a requirement for antibiotic activity. In this regard, the use of in vitro experiments is crucial to study this process. To address the process of peptide cyclization during GPA biosynthesis, a series of peptide substrates and different Oxy enzymes are required. In this chapter, we describe a practical and efficient route for the synthesis of peptidyl-CoAs, the expression of proteins/enzymes involved in the in vitro cyclization assay, the loading of the PCP with peptidyl-CoAs, an optimized CYP450-mediated cyclization cascade and assay workup followed by mass spectrometry (MS) characterization. This in vitro assay affords high conversion to cyclic peptides and demonstrates the tolerance of the P450s for novel GPA precursor peptide substrates.
糖肽抗生素(GPA)是重要的且与医学相关的肽类天然产物。在抗菌药物耐药性(AMR)的背景下,理解和操控GPA生物合成对于发现这些肽的新生物活性衍生物至关重要。在GPA生物合成的所有酶促步骤中,最复杂的发生在肽元的成熟(交联)过程中。这一过程是在肽仍附着于非核糖体肽合成酶(NRPS)机制时,通过细胞色素P450(CYP450或Oxy)介导的环化级联反应实现的。人们对理解GPA中芳香族侧链之间交联的形成非常感兴趣,因为这一过程会导致杯状肽元的形成,而杯状肽元本身就是抗生素活性所必需的。在这方面,体外实验对于研究这一过程至关重要。为了解决GPA生物合成过程中的肽环化问题,需要一系列肽底物和不同的Oxy酶。在本章中,我们描述了一种实用且高效的路线,用于合成肽基辅酶A、参与体外环化测定的蛋白质/酶的表达、用肽基辅酶A加载PCP、优化的CYP450介导的环化级联反应以及测定后处理,随后进行质谱(MS)表征。这种体外测定法能实现向环肽的高转化率,并证明了P450对新型GPA前体肽底物的耐受性。