Suppr超能文献

快速结肠炎检测器-XAI:一种利用稀疏自动编码器和可解释人工智能的高效人工智能模型用于溃疡性结肠炎诊断。

FastColitisDetector-XAI: An efficient AI model utilizing sparse Autoencoder with explainable AI for ulcerative colitis diagnosis.

作者信息

Dhole Sumedh Vithalrao, Chougule Sangeeta R

机构信息

Department of Electronics and Telecommunication Engineering, KIT's College of Engineering (Autonomous), Kolhapur-416234, India.

Kolhapur Institute of Technology's College of Engineering, Kolhapur-416234, India.

出版信息

MethodsX. 2025 May 8;14:103356. doi: 10.1016/j.mex.2025.103356. eCollection 2025 Jun.

Abstract

We suggest AI framework for UC diagnosis using Sparse Autoencoders (SA) for feature extraction combined with Explainable AI (XAI) utilizing Grad-CAM to provide a higher degree of interpretability for the model. SA is applied for dimensionality reduction of medical images to efficiently encode the images and preserve vital information required for diagnosis. Features so extracted are passed to a machine learning classifier for classification for detection of UC presence. Visualizations from Grad-CAM are utilized to demarcate areas critical for disease, like regions of inflammation, ulcers and mucosal patterns, so as to achieve transparency and also allow the clinicians to see why the model did what it did. The proposed SA-XAI model greatly surpasses competing models in their respective performance in accuracy, precision, recall and F1 score with remarkable results of 98 %, 97.5 %, 96.4 % and 95 % respectively. Coupling of Sparse Autoencoders with XAI, achieves high accuracy in diagnosis and gains clinician's confidence in AI model's decision-making transparent. Methodology include:•Sparse Autoencoders to extract and condense the most salient features from medical images.•Grad-CAM to highlight significant regions, which maintains model's decision making process transparent.•Has 98 % accuracy, 97.5 % precision, 96.4 % recall and 95 % F1 score for detecting UC.

摘要

我们建议使用稀疏自编码器(SA)进行特征提取的人工智能框架用于溃疡性结肠炎(UC)诊断,并结合使用梯度加权类激活映射(Grad-CAM)的可解释人工智能(XAI),为模型提供更高程度的可解释性。SA用于医学图像的降维,以有效地对图像进行编码并保留诊断所需的重要信息。如此提取的特征被传递给机器学习分类器进行分类,以检测UC的存在。利用Grad-CAM的可视化来划定对疾病至关重要的区域,如炎症区域、溃疡和黏膜模式区域,从而实现透明度,还能让临床医生了解模型为何做出这样的决策。所提出的SA-XAI模型在准确性、精确性、召回率和F1分数方面的各自性能上大大超越了竞争模型,分别取得了98%、97.5%、96.4%和95%的显著成果。稀疏自编码器与XAI的结合,在诊断中实现了高精度,并使临床医生对人工智能模型决策的透明度有信心。方法包括:•稀疏自编码器从医学图像中提取和浓缩最显著的特征。•Grad-CAM突出重要区域,保持模型决策过程透明。•检测UC的准确率为98%,精确率为97.5%,召回率为96.4%,F1分数为95%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cc9/12141066/d569fb88f915/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验