Suppr超能文献

溃疡性结肠炎脂质代谢相关基因特征的综合分析

Comprehensive analysis of a lipid metabolism-related gene signature for ulcerative colitis.

作者信息

Yuan Linqing, Peng Kaiyue

机构信息

Department of Gastroenterology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.

出版信息

Transl Pediatr. 2025 Aug 31;14(8):1770-1786. doi: 10.21037/tp-2025-161. Epub 2025 Aug 27.

Abstract

BACKGROUND

Lipid metabolism is a critical factor in the inflammatory response and development of ulcerative colitis (UC). However, the diagnosis and treatment of UC remain obscure. The molecular mechanisms underlying UC remain unclear. This study aimed to identify efficacious biomarkers for the diagnosis and treatment of UC, and extend understandings of the pivotal molecular mechanisms related to lipid metabolism in the pathogenesis of UC.

METHODS

Datasets relating to UC were obtained from the Gene Expression Omnibus (GEO) database. Key lipid metabolism-related genes (LMGs) were identified by differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning. Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of the LMGs. The cell infiltration by estimation of stromal and immune cells in cancer tissues (CIBERSORT) and xCell algorithms were used to examine immune infiltration. Single-cell RNA sequencing (scRNA-seq) was used to characterize the LMGs.

RESULTS

A total of 16 differentially expressed LMGs were identified from the tissue and blood samples of UC patients and healthy controls. The WGCNA and correlation analysis of the tumor microenvironments identified seven LMGs (i.e., , , , , , , and ). Subsequently, the machine learning and ROC curve analyses identified five hub LMGs (i.e., , , , , and ). The scRNA-seq analysis validated the expression of the hub LMGs and revealed significant increases in the T cells and inflammatory cells in UC.

CONCLUSIONS

Our results suggest that the LMG signature may serve as a novel diagnostic tool for identifying patients with UC. Our machine-learning model may contribute to future research on the formulation of potential therapeutic strategies.

摘要

背景

脂质代谢是溃疡性结肠炎(UC)炎症反应和发展的关键因素。然而,UC的诊断和治疗仍不明确。UC潜在的分子机制尚不清楚。本研究旨在识别用于UC诊断和治疗的有效生物标志物,并加深对UC发病机制中与脂质代谢相关的关键分子机制的理解。

方法

从基因表达综合数据库(GEO)获取与UC相关的数据集。通过差异表达分析、加权基因共表达网络分析(WGCNA)和机器学习确定关键脂质代谢相关基因(LMGs)。采用受试者工作特征(ROC)曲线评估LMGs的诊断性能。利用癌症组织中基质和免疫细胞估计(CIBERSORT)和xCell算法检测免疫浸润情况。采用单细胞RNA测序(scRNA-seq)对LMGs进行表征。

结果

从UC患者和健康对照的组织及血液样本中总共鉴定出16个差异表达的LMGs。WGCNA和肿瘤微环境的相关性分析确定了7个LMGs(即 , , , , , 和 )。随后,机器学习和ROC曲线分析确定了5个核心LMGs(即 , , , , 和 )。scRNA-seq分析验证了核心LMGs的表达,并揭示UC中T细胞和炎症细胞显著增加。

结论

我们的结果表明,LMG特征可能作为一种识别UC患者的新型诊断工具。我们的机器学习模型可能有助于未来制定潜在治疗策略的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/12433096/2b53f97ad998/tp-14-08-1770-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验