Portuondo-Mallet Lariza María de la Caridad, Mollineda-Diogo Niurka, Orozco-Morales Rubén, Lorenzo-Ginori Juan Valentín
Centro de Estudios de Neurociencias, Procesamiento de Imágenes y Señales (CENPIS), Universidad de Oriente, Santiago de Cuba, Cuba.
Centro de Investigaciones de la Informática (CII), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba.
Front Med Technol. 2024 Aug 23;6:1360280. doi: 10.3389/fmedt.2024.1360280. eCollection 2024.
Leishmaniasis is a disease caused by protozoan parasites of the genus and has a high prevalence and impact on global health. Currently, the available drugs for its treatment have drawbacks, such as high toxicity, resistance of the parasite, and high cost. Therefore, the search for new, more effective, and safe drugs is a priority. The effectiveness of an anti-leishmanial drug is analyzed through studies in which a technician manually counts the intracellular form of the parasite (amastigote) within macrophages, which is slow, laborious, and prone to errors.
To develop a computational system that facilitates the detection and counting of amastigotes in microscopy images obtained from studies using image processing techniques.
Segmentation of objects in the microscope image that might be amastigotes was performed using the multilevel Otsu method on the saturation component of the color model. In addition, morphological operations and the watershed transform combined with the weighted external distance transform were used to separate clustered objects. Then positive (amastigote) objects were detected (and consequently counted) using a classifier algorithm, the selection of which as well as the definition of the features to be used were also part of this research. MATLAB was used for the development of the system.
The results were evaluated in terms of sensitivity, precision, and the F-measure and suggested a favorable effectiveness of the proposed method.
This system can help researchers by allowing large volumes of images of amastigotes to be counted using an automatic image analysis technique.
利什曼病是由利什曼原虫属的原生动物寄生虫引起的疾病,在全球健康领域具有高发病率和重大影响。目前,用于治疗该病的现有药物存在缺点,如高毒性、寄生虫耐药性和高成本。因此,寻找新的、更有效且安全的药物是当务之急。一种抗利什曼原虫药物的有效性是通过研究来分析的,在这些研究中,技术人员手动计数巨噬细胞内寄生虫的细胞内形式(无鞭毛体),这种方法缓慢、费力且容易出错。
开发一种计算系统,利用图像处理技术促进对从研究中获得的显微镜图像中的无鞭毛体进行检测和计数。
使用基于HSV颜色模型饱和度分量的多级大津法对显微镜图像中可能是无鞭毛体的物体进行分割。此外,形态学操作以及结合加权外部距离变换的分水岭变换被用于分离聚集的物体。然后使用分类算法检测(并因此计数)阳性(无鞭毛体)物体,分类算法的选择以及要使用的特征的定义也是本研究的一部分。使用MATLAB开发该系统。
根据灵敏度、精度和F值对结果进行评估,结果表明所提出的方法具有良好的有效性。
该系统可以通过允许使用自动图像分析技术对大量无鞭毛体图像进行计数来帮助研究人员。