Suppr超能文献

过氧化物酶体增殖物激活受体γ激动剂吡格列酮通过重编程葡萄糖代谢预防低氧诱导的心脏功能障碍。

PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction by Reprogramming Glucose Metabolism.

机构信息

College of Life Sciences, Northwest University, Xi'an, 710069, China.

The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, 710069, China.

出版信息

Int J Biol Sci. 2024 Aug 6;20(11):4297-4313. doi: 10.7150/ijbs.98387. eCollection 2024.

Abstract

The heart relies on various defense mechanisms, including metabolic plasticity, to maintain its normal structure and function under high-altitude hypoxia. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ), sensitizes insulin, which in turn regulates blood glucose levels. However, its preventive effects against hypoxia-induced cardiac dysfunction at high altitudes have not been reported. In this study, pioglitazone effectively prevented cardiac dysfunction in hypoxic mice for 4 weeks, independent of its effects on insulin sensitivity. experiments demonstrated that pioglitazone enhanced the contractility of primary cardiomyocytes and reduced the risk of QT interval prolongation under hypoxic conditions. Additionally, pioglitazone promoted cardiac glucose metabolic reprogramming by increasing glycolytic capacity; enhancing glucose oxidation, electron transfer, and oxidative phosphorylation processes; and reducing mitochondrial reactive ROS production, which ultimately maintained mitochondrial membrane potential and ATP production in cardiomyocytes under hypoxic conditions. Notably, as a PPARγ agonist, pioglitazone promoted hypoxia-inducible factor 1α (HIF-1α) expression in hypoxic myocardium. Moreover, KC7F2, a HIF-1α inhibitor, disrupted the reprogramming of cardiac glucose metabolism and reduced cardiac function in pioglitazone-treated mice under hypoxic conditions. In conclusion, pioglitazone effectively prevented high-altitude hypoxia-induced cardiac dysfunction by reprogramming cardiac glucose metabolism.

摘要

心脏依赖各种防御机制,包括代谢可塑性,以在高原缺氧环境下维持其正常结构和功能。吡格列酮是过氧化物酶体增殖物激活受体 γ(PPARγ)的激动剂,可增强胰岛素的敏感性,从而调节血糖水平。然而,其在预防高原缺氧引起的心脏功能障碍方面的作用尚未得到报道。在这项研究中,吡格列酮在 4 周的缺氧条件下有效预防了小鼠的心脏功能障碍,而与胰岛素敏感性无关。实验表明,吡格列酮增强了原代心肌细胞的收缩力,并降低了缺氧条件下 QT 间期延长的风险。此外,吡格列酮通过增加糖酵解能力、增强葡萄糖氧化、电子传递和氧化磷酸化过程以及减少线粒体活性氧产生来促进心脏葡萄糖代谢重编程,从而在缺氧条件下维持心肌细胞的线粒体膜电位和 ATP 产生。值得注意的是,作为一种 PPARγ 激动剂,吡格列酮可促进缺氧心肌中缺氧诱导因子 1α(HIF-1α)的表达。此外,HIF-1α抑制剂 KC7F2 破坏了吡格列酮治疗的缺氧小鼠心脏葡萄糖代谢的重编程,降低了心脏功能。总之,吡格列酮通过重编程心脏葡萄糖代谢有效预防了高原缺氧引起的心脏功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc2/11379067/c79309f05358/ijbsv20p4297g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验