Pu Di, Panahi Amirreza, Natale Giovanniantonio, Benneker Anne M
Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
J Chem Phys. 2024 Sep 14;161(10). doi: 10.1063/5.0224865.
Thermophoresis has emerged as a powerful tool for characterizing and manipulating colloids at the nano- and micro-scales due to its sensitivity to colloid-solvent interactions. The use of surfactants enables the tailoring of surface chemistry on colloidal particles and the tuning of interfacial interactions. However, the microscopic mechanisms underlying thermophoresis in surfactant solutions remain poorly understood due to the complexity of multiscale interaction coupling. To achieve a more fundamental understanding of the roles of surfactants, we investigated the thermophoretic behavior of silica beads in both ionic and nonionic surfactant solutions at various background temperatures. We provide a complete mechanistic picture of the effects of surfactants on interfacial interactions through mode-coupling analysis of both electrophoretic and thermophoretic experiments. Our results demonstrate that silica thermophoresis is predominantly governed by the dissociation of silanol functional groups at silica-water interfaces in nonionic surfactant solutions, while in ionic surfactant solutions, the primary mechanism driving silica thermophoresis is the adsorption of ionic surfactants onto the silica surface.
由于热泳对胶体 - 溶剂相互作用敏感,它已成为在纳米和微米尺度上表征和操纵胶体的有力工具。表面活性剂的使用能够定制胶体颗粒的表面化学性质并调节界面相互作用。然而,由于多尺度相互作用耦合的复杂性,表面活性剂溶液中热泳的微观机制仍知之甚少。为了更深入地理解表面活性剂的作用,我们研究了不同背景温度下二氧化硅珠在离子和非离子表面活性剂溶液中的热泳行为。我们通过对电泳和热泳实验的模式耦合分析,提供了表面活性剂对界面相互作用影响的完整机理图。我们的结果表明,在非离子表面活性剂溶液中,二氧化硅热泳主要由二氧化硅 - 水界面处硅醇官能团的解离控制,而在离子表面活性剂溶液中,驱动二氧化硅热泳的主要机制是离子表面活性剂在二氧化硅表面的吸附。