Suppr超能文献

非离子液体中胶体颗粒的光热泳操控

Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids.

作者信息

Peng Xiaolei, Lin Linhan, Hill Eric H, Kunal Pranaw, Humphrey Simon M, Zheng Yuebing

机构信息

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.

Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2018 Oct 25;122(42):24226-24234. doi: 10.1021/acs.jpcc.8b03828. Epub 2018 Jun 1.

Abstract

The response of colloidal particles to a light-controlled external temperature field can be harnessed for opto-thermophoretic manipulation of the particles. The thermoelectric effect is regarded as the driving force for thermophoretic trapping of particles at the light-irradiated hot region, which is thus limited to ionic liquids. Herein, we achieve opto-thermophoretic manipulation of colloidal particles in various non-ionic liquids, including water, ethanol, isopropyl alcohol and 1-butanol, and establish the physical mechanism of the manipulation at the molecular level. We reveal that the non-ionic driving force originates from a layered structure of solvent molecules at the particle-solvent interface, which is supported by molecular dynamics simulations. Furthermore, the effects of hydrophilicity, solvent type, and ionic strength on the layered interfacial structures and thus the trapping stability of particles are investigated, providing molecular-level insight into thermophoresis and guidance on interfacial engineering for optothermal manipulation.

摘要

胶体颗粒对光控外部温度场的响应可用于对颗粒进行光热泳操控。热电效应被视为颗粒在光照射的热区进行热泳捕获的驱动力,因此这种效应仅限于离子液体。在此,我们实现了在包括水、乙醇、异丙醇和正丁醇在内的各种非离子液体中对胶体颗粒的光热泳操控,并在分子水平上建立了操控的物理机制。我们揭示了非离子驱动力源自颗粒 - 溶剂界面处溶剂分子的层状结构,这一结论得到了分子动力学模拟的支持。此外,还研究了亲水性、溶剂类型和离子强度对层状界面结构以及颗粒捕获稳定性的影响,为热泳提供了分子水平的见解,并为光热操控的界面工程提供了指导。

相似文献

1
Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids.非离子液体中胶体颗粒的光热泳操控
J Phys Chem C Nanomater Interfaces. 2018 Oct 25;122(42):24226-24234. doi: 10.1021/acs.jpcc.8b03828. Epub 2018 Jun 1.
2
Optothermal Manipulations of Colloidal Particles and Living Cells.胶体颗粒和活细胞的光热操纵。
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
3
Interfacial-entropy-driven thermophoretic tweezers.界面熵驱动的热泳镊子。
Lab Chip. 2017 Sep 12;17(18):3061-3070. doi: 10.1039/c7lc00432j.
5
Opto-Thermophoretic Tweezers and Assembly.光热泳镊子与组装
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.
7
Opto-Thermoelectric Tweezers: Principles and Applications.光热电镊子:原理与应用
Front Phys. 2020;8. doi: 10.3389/fphy.2020.580014. Epub 2020 Oct 6.
8
Opto-Thermophoretic Manipulation.光热操控。
ACS Nano. 2021 Apr 27;15(4):5925-5943. doi: 10.1021/acsnano.0c10427. Epub 2021 Mar 18.
9
Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation.纳米散热器介导的确定性光热电操纵
ACS Nano. 2018 Oct 23;12(10):10383-10392. doi: 10.1021/acsnano.8b05824. Epub 2018 Sep 27.

引用本文的文献

1
Perspective: Thermophoresis and Its Promise for Optical Patterning.视角:热泳现象及其在光学图案化方面的前景。
Langmuir. 2025 Jun 3;41(21):12835-12840. doi: 10.1021/acs.langmuir.5c01023. Epub 2025 May 13.
4
Recent Advancements in Nanophotonics for Optofluidics.用于光流体学的纳米光子学的最新进展。
Adv Phys X. 2024;9(1). doi: 10.1080/23746149.2024.2416178. Epub 2024 Oct 22.
5
Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.光热纳米材料:一种强大的光热转换材料。
Chem Rev. 2023 Jun 14;123(11):6891-6952. doi: 10.1021/acs.chemrev.3c00159. Epub 2023 May 3.
7
Optothermal rotation of micro-/nano-objects.微/纳物体的光热旋转。
Chem Commun (Camb). 2023 Feb 21;59(16):2208-2221. doi: 10.1039/d2cc06955e.
9
Opto-Thermophoretic Tweezers and Assembly.光热泳镊子与组装
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.

本文引用的文献

1
Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation.用于动态捕获和操控的全息等离子体纳米镊子。
Nano Lett. 2017 Dec 13;17(12):7920-7925. doi: 10.1021/acs.nanolett.7b04289. Epub 2017 Nov 21.
3
Opto-thermophoretic assembly of colloidal matter.胶体物质的光热泳组装
Sci Adv. 2017 Sep 8;3(9):e1700458. doi: 10.1126/sciadv.1700458. eCollection 2017 Sep.
4
Interfacial-entropy-driven thermophoretic tweezers.界面熵驱动的热泳镊子。
Lab Chip. 2017 Sep 12;17(18):3061-3070. doi: 10.1039/c7lc00432j.
5
Optical imaging of surface chemistry and dynamics in confinement.受限条件下表面化学和动力学的光学成像。
Science. 2017 Aug 25;357(6353):784-788. doi: 10.1126/science.aal4346. Epub 2017 Jul 20.
7
Photothermal Transport of DNA in Entropy-Landscape Plasmonic Waveguides.熵景观等离子体波导中的 DNA 的光热输运。
ACS Nano. 2017 May 23;11(5):4553-4563. doi: 10.1021/acsnano.6b08563. Epub 2017 Apr 28.
9
Thermo-Osmotic Flow in Thin Films.薄膜中的热渗透流
Phys Rev Lett. 2016 May 6;116(18):188303. doi: 10.1103/PhysRevLett.116.188303. Epub 2016 May 5.
10
Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids.受限胶体热泳的流体动力边界效应。
Phys Rev Lett. 2016 Apr 1;116(13):138302. doi: 10.1103/PhysRevLett.116.138302. Epub 2016 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验