So Jae-Pil, Luo Jialun, Choi Jaehong, McCullian Brendan, Fuchs Gregory D
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States.
Department of Physics, Soongsil University, Seoul 06978, Republic of Korea.
Nano Lett. 2024 Sep 18;24(37):11669-11675. doi: 10.1021/acs.nanolett.4c03233. Epub 2024 Sep 9.
Silicon vacancy (V) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of V centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter-cavity interactions for efficient quantum photonic applications.
由于其稳健的电子和光学特性,包括长自旋相干寿命以及明亮、稳定的发射,4H-碳化硅中的硅空位(V)中心已成为量子网络应用的有力候选者。在此,我们报告了V中心与等离子体纳米腔的集成,以通过珀塞尔效应增强发射,这对于可扩展量子网络至关重要。采用简单的制造工艺,我们展示了支持纳米级模式体积的等离子体腔,并展示出自发发射率的增加,测量得到的珀塞尔因子高达48。除了研究光学共振模式外,我们还展示了相对于辐射限制值,自旋保持共振光学跃迁的光学稳定性有所提高。这些结果突出了纳米光子结构在推进量子网络技术方面的潜力,并强调了优化发射器-腔相互作用以实现高效量子光子应用的重要性。