Suppr超能文献

利用超小模式体积等离子体腔对碳化硅中硅空位中心进行珀塞尔增强和自旋光谱研究。

Purcell Enhancement and Spin Spectroscopy of Silicon Vacancy Centers in Silicon Carbide Using an Ultrasmall Mode-Volume Plasmonic Cavity.

作者信息

So Jae-Pil, Luo Jialun, Choi Jaehong, McCullian Brendan, Fuchs Gregory D

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States.

Department of Physics, Soongsil University, Seoul 06978, Republic of Korea.

出版信息

Nano Lett. 2024 Sep 18;24(37):11669-11675. doi: 10.1021/acs.nanolett.4c03233. Epub 2024 Sep 9.

Abstract

Silicon vacancy (V) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of V centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter-cavity interactions for efficient quantum photonic applications.

摘要

由于其稳健的电子和光学特性,包括长自旋相干寿命以及明亮、稳定的发射,4H-碳化硅中的硅空位(V)中心已成为量子网络应用的有力候选者。在此,我们报告了V中心与等离子体纳米腔的集成,以通过珀塞尔效应增强发射,这对于可扩展量子网络至关重要。采用简单的制造工艺,我们展示了支持纳米级模式体积的等离子体腔,并展示出自发发射率的增加,测量得到的珀塞尔因子高达48。除了研究光学共振模式外,我们还展示了相对于辐射限制值,自旋保持共振光学跃迁的光学稳定性有所提高。这些结果突出了纳米光子结构在推进量子网络技术方面的潜力,并强调了优化发射器-腔相互作用以实现高效量子光子应用的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验