Boyce Andrew M, Li Hengming, Wilson Nathaniel C, Acil Deniz, Shams-Ansari Amirhassan, Chakravarthi Srivatsa, Pederson Christian, Shen Qixin, Yama Nicholas, Fu Kai-Mei C, Loncar Marko, Mikkelsen Maiken H
Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States.
Department of Physics, Duke University, Durham, North Carolina 27708, United States.
Nano Lett. 2024 Mar 27;24(12):3575-3580. doi: 10.1021/acs.nanolett.3c04002. Epub 2024 Mar 13.
Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.
由于具有出色的光稳定性、最小的光谱扩散以及可观的零声子线发射,金刚石中的硅空位中心(SiV)已成为量子科学领域一个很有前景的平台。然而,通过与光学腔耦合来延长其纳秒级的慢激发态寿命仍是一个悬而未决的挑战,因为目前的实验仅能将其延长约10倍。在此,我们将带负电荷的SiV与亚衍射极限的等离子体腔耦合,实现了仪器限制下≤8 ps的寿命,这对应着自发发射率提高了135倍,光致发光增强了19倍。纳米颗粒被印刷在金膜上的超薄金刚石膜上,形成了具有超小体积的等离子体纳米间隙腔阵列。对植入深度为5纳米和10纳米的SiV进行了研究,以阐明表面对其寿命和亮度的影响。腔、植入深度和超薄金刚石膜之间的相互作用为下一代金刚石器件产生超快、明亮的SiV发射提供了见解。