Suppr超能文献

鉴定 LamB 中负责多价大肠噬菌体 CSP1 受体兼容性的氨基酸残基。

Identification of amino acid residue in the LamB responsible for the receptor compatibility of polyvalent coliphage CSP1.

机构信息

Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.

Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.

出版信息

J Virol. 2024 Oct 22;98(10):e0067624. doi: 10.1128/jvi.00676-24. Epub 2024 Sep 9.

Abstract

UNLABELLED

Polyvalent bacteriophages show the feature of infecting bacteria across multiple species or even orders. Infectivity of a polyvalent phage is variable depending on the host bacteria, which can disclose differential inhibition of bacteria by the phage. In this study, a polyvalent phage CSP1 infecting both ATCC 29544 and MG1655 was isolated. CSP1 showed higher growth inhibition and adsorption rate in compared to , and identification of host receptors revealed that CSP1 uses LamB (LamB) as a receptor but that CSP1 requires both LamB (LamB) and lipopolysaccharide (LPS) core for infection. The substitution of LamB with LamB in enhanced CSP1 susceptibility and made LPS core no more essential for CSP1 infection. Comparative analysis of LamB and LamB disclosed that the extra proline at amino acid residue 284 in LamB made a structural distinction by forming a longer loop and that the deletion of 284P in LamB aligns its structure and makes LamB function like LamB, enhancing CSP1 adsorption and growth inhibition of . These results suggest that 284P of LamB plays a critical role in determining the CSP1-host bacteria interaction. These findings could provide insight into the elucidation of molecular determinants in the interaction between polyvalent phages and host bacteria and help us to understand the phage infectivity for efficient phage application.

IMPORTANCE

Polyvalent phages have the advantage of a broader host range, overcoming the limitation of the narrow host range of phages. However, the limited molecular biological understanding on the host bacteria-polyvalent phage interaction hinders its effective application. Here, we revealed that the ability of the polyvalent phage CSP1 to infect ATCC 29544 is disturbed by a single proline residue in the LamB protein and that lipopolysaccharide is used as an auxiliary receptor for CSP1 to support the adsorption and the subsequent infection of . These results can contribute to a better understanding of the interaction between polyvalent phages and host bacteria for efficient phage application.

摘要

未加标签

多价噬菌体具有感染多种甚至多个属细菌的特性。多价噬菌体的感染力取决于宿主细菌,这可以揭示噬菌体对细菌的不同抑制作用。在本研究中,分离到一株感染 ATCC 29544 和 MG1655 的多价噬菌体 CSP1。CSP1 在 中的生长抑制和吸附率均高于 ,宿主受体的鉴定表明,CSP1 以 LamB (LamB) 作为受体,但 CSP1 感染 还需要 LamB (LamB) 和脂多糖 (LPS) 核心。在 中用 LamB 替代 LamB 增强了 CSP1 的敏感性,使 LPS 核心不再是 CSP1 感染所必需的。对 LamB 和 LamB 的比较分析表明,LamB 中第 284 位氨基酸残基上额外的脯氨酸形成了一个更长的环,使其结构发生了区分,而 LamB 中 284P 的缺失使其结构与 LamB 对齐,增强了 CSP1 在 中的吸附和生长抑制作用。这些结果表明,LamB 的 284P 在决定 CSP1-宿主细菌相互作用中起着关键作用。这些发现可以深入了解多价噬菌体与宿主细菌相互作用中的分子决定因素,有助于我们了解噬菌体的感染力,从而有效应用噬菌体。

重要性

多价噬菌体具有较宽的宿主范围优势,克服了噬菌体宿主范围狭窄的限制。然而,对宿主细菌-多价噬菌体相互作用的有限分子生物学理解阻碍了其有效应用。在这里,我们揭示了多价噬菌体 CSP1 感染 ATCC 29544 的能力受到 LamB 蛋白中单个脯氨酸残基的干扰,脂多糖被用作 CSP1 的辅助受体,以支持 CSP1 的吸附和随后的感染。这些结果有助于更好地理解多价噬菌体与宿主细菌的相互作用,从而有效应用噬菌体。

相似文献

1
Identification of amino acid residue in the LamB responsible for the receptor compatibility of polyvalent coliphage CSP1.
J Virol. 2024 Oct 22;98(10):e0067624. doi: 10.1128/jvi.00676-24. Epub 2024 Sep 9.
2
Phage S144, A New Polyvalent Phage Infecting spp. and .
Int J Mol Sci. 2020 Jul 22;21(15):5196. doi: 10.3390/ijms21155196.
4
Amino acid residues in the tail fiber differentiate the host specificity of bacteriophage.
J Virol. 2025 May 20;99(5):e0028925. doi: 10.1128/jvi.00289-25. Epub 2025 Apr 11.
5
Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula.
Int J Food Microbiol. 2017 Jul 17;253:1-11. doi: 10.1016/j.ijfoodmicro.2017.04.009. Epub 2017 Apr 21.
6
Characterization of the Attachment of Three New Coliphages onto the Ferrichrome Transporter FhuA.
J Virol. 2023 Jul 27;97(7):e0066723. doi: 10.1128/jvi.00667-23. Epub 2023 Jun 13.
7
Manipulating Interactions between T4 Phage Long Tail Fibers and Escherichia coli Receptors.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0042321. doi: 10.1128/AEM.00423-21.
8
Genetic insights into novel lysis suppression by phage CSP1 in Escherichia coli.
J Microbiol. 2025 Apr;63(4):e2501013. doi: 10.71150/jm.2501013. Epub 2025 Apr 29.
9
Bacteriophage host range evolution through engineered enrichment bias, exploiting heterologous surface receptor expression.
Environ Microbiol. 2020 Dec;22(12):5207-5221. doi: 10.1111/1462-2920.15188. Epub 2020 Sep 28.
10
Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae.
Arch Virol. 2014 Sep;159(9):2253-61. doi: 10.1007/s00705-014-2055-x. Epub 2014 Apr 6.

本文引用的文献

2
Viral community structure and functional potential vary with lifestyle and altitude in soils of Mt. Everest.
Environ Int. 2023 Aug;178:108055. doi: 10.1016/j.envint.2023.108055. Epub 2023 Jun 19.
3
Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger.
J Virol. 2023 Mar 30;97(3):e0158422. doi: 10.1128/jvi.01584-22. Epub 2023 Feb 13.
4
PhaTYP: predicting the lifestyle for bacteriophages using BERT.
Brief Bioinform. 2023 Jan 19;24(1). doi: 10.1093/bib/bbac487.
5
Structural basis for host recognition and superinfection exclusion by bacteriophage T5.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2211672119. doi: 10.1073/pnas.2211672119. Epub 2022 Oct 10.
6
Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022).
Arch Virol. 2022 Nov;167(11):2429-2440. doi: 10.1007/s00705-022-05516-5.
9
Mosaic Evolution of Beta-Barrel-Porin-Encoding Genes in .
Appl Environ Microbiol. 2022 Apr 12;88(7):e0006022. doi: 10.1128/aem.00060-22. Epub 2022 Mar 14.
10
Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
PLoS Biol. 2021 Nov 16;19(11):e3001424. doi: 10.1371/journal.pbio.3001424. eCollection 2021 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验