Peng Jingyi, Mei Haixia, Yang Ruiming, Meng Keyu, Shi Lijuan, Zhao Jian, Zhang Bowei, Xuan Fuzhen, Wang Tao, Zhang Tong
Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun 130022, China.
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
ACS Sens. 2024 Sep 27;9(9):4934-4946. doi: 10.1021/acssensors.4c01584. Epub 2024 Sep 9.
This study introduces a novel deep learning framework for lung health evaluation using exhaled gas. The framework synergistically integrates pyramid pooling and a dual-encoder network, leveraging SHapley Additive exPlanations (SHAP) derived feature importance to enhance its predictive capability. The framework is specifically designed to effectively distinguish between smokers, individuals with chronic obstructive pulmonary disease (COPD), and control subjects. The pyramid pooling structure aggregates multilevel global information by pooling features at four scales. SHAP assesses feature importance from the eight sensors. Two encoder architectures handle different feature sets based on their importance, optimizing performance. Besides, the model's robustness is enhanced using the sliding window technique and white noise augmentation on the original data. In 5-fold cross-validation, the model achieved an average accuracy of 96.40%, surpassing that of a single encoder pyramid pooling model by 10.77%. Further optimization of filters in the transformer convolutional layer and pooling size in the pyramid module increased the accuracy to 98.46%. This study offers an efficient tool for identifying the effects of smoking and COPD, as well as a novel approach to utilizing deep learning technology to address complex biomedical issues.
本研究介绍了一种用于利用呼出气体评估肺部健康的新型深度学习框架。该框架协同集成了金字塔池化和双编码器网络,利用夏普利值(SHapley Additive exPlanations,SHAP)导出的特征重要性来增强其预测能力。该框架专门设计用于有效区分吸烟者、慢性阻塞性肺疾病(COPD)患者和对照受试者。金字塔池化结构通过在四个尺度上池化特征来聚合多级全局信息。SHAP评估来自八个传感器的特征重要性。两种编码器架构根据其重要性处理不同的特征集,以优化性能。此外,使用滑动窗口技术和对原始数据进行白噪声增强来提高模型的鲁棒性。在五折交叉验证中,该模型的平均准确率达到96.40%,比单编码器金字塔池化模型高出10.77%。进一步优化变压器卷积层中的滤波器和金字塔模块中的池化大小,可将准确率提高到98.46%。本研究为识别吸烟和COPD的影响提供了一种有效工具,以及一种利用深度学习技术解决复杂生物医学问题的新方法。