Mei Haixia, Yang Ruiming, Peng Jingyi, Meng Keyu, Wang Tao, Wang Lijie
Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun 130022, China.
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Sensors (Basel). 2025 Apr 8;25(8):2355. doi: 10.3390/s25082355.
Traditional volatile organic compounds (VOCs) detection models separate component identification and concentration prediction, leading to low feature utilization and limited learning in small-sample scenarios. Here, we realize a Residual Fusion Network based on multi-task learning (MTL-RCANet) to implement component identification and concentration prediction of VOCs. The model integrates channel attention mechanisms and cross-fusion modules to enhance feature extraction capabilities and task synergy. To further balance the tasks, a dynamic weighted loss function is incorporated to adjust weights dynamically according to the training progress of each task, thereby enhancing the overall performance of the model. The proposed network achieves an accuracy of 94.86% and an R score of 0.95. Comparative experiments reveal that using only 35% of the total data length as input data yields excellent identification performance. Moreover, multi-task learning effectively integrates feature information across tasks, significantly improving model efficiency compared to single-task learning.
传统的挥发性有机化合物(VOCs)检测模型将成分识别和浓度预测分开,导致特征利用率低,在小样本场景下学习有限。在此,我们实现了一种基于多任务学习的残差融合网络(MTL-RCANet)来实现VOCs的成分识别和浓度预测。该模型集成了通道注意力机制和交叉融合模块,以增强特征提取能力和任务协同效应。为了进一步平衡任务,引入了动态加权损失函数,根据每个任务的训练进度动态调整权重,从而提高模型的整体性能。所提出的网络实现了94.86%的准确率和0.95的R分数。对比实验表明,仅使用总数据长度的35%作为输入数据就能产生出色的识别性能。此外,多任务学习有效地整合了跨任务的特征信息,与单任务学习相比,显著提高了模型效率。