Suppr超能文献

量化非法野生动植物贸易多数据源中的物种偏见及其对保护的影响。

Quantifying species biases among multidata sources on illegal wildlife trade and its implications for conservation.

机构信息

School of Ecology and State Key Laboratory of Biological Control, Sun Yat-sen University, Shenzhen, China.

School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

出版信息

Conserv Biol. 2024 Oct;38(5):e14351. doi: 10.1111/cobi.14351.

Abstract

Unsustainable wildlife consumption and illegal wildlife trade (IWT) threaten biodiversity worldwide. Although publicly accessible data sets are increasingly used to generate insights into IWT, little is known about their potential bias. We compared three typical and temporally corresponding data sets (4204 court verdicts, 926 seizure news reports, and 219 bird market surveys) on traded birds native to China and evaluated their possible species biases. Specifically, we evaluated bias and completeness of sampling for species richness, phylogeny, conservation status, spatial distribution, and life-history characteristics among the three data sets when determining patterns of illegal trade. Court verdicts contained the largest species richness. In bird market surveys and seizure news reports, phylogenetic clustering was greater than that in court verdicts, where songbird species (i.e., Passeriformes) were detected in higher proportions in market surveys. The seizure news data set contained the highest proportion of species of high conservation priority but the lowest species coverage. Across the country, all data sets consistently reported relatively high species richness in south and southwest regions, but markets revealed a northern geographic bias. The species composition in court verdicts and markets also exhibited distinct geographical patterns. There was significant ecological trait bias when we modeled whether a bird species is traded in the market. Our regression model suggested that species with small body masses, large geographical ranges, and a preference for anthropogenic habitats and those that are not nationally protected were more likely to be traded illegally. The species biases we found emphasize the need to know the constraints of each data set so that they can optimally inform strategies to combat IWT.

摘要

不可持续的野生动物消费和非法野生动物贸易(IWT)威胁着全球的生物多样性。尽管越来越多地使用公开可访问的数据来深入了解 IWT,但对其潜在偏差却知之甚少。我们比较了三个典型且时间上对应的数据集(4204 个法庭判决、926 个扣押新闻报道和 219 个鸟类市场调查),这些数据集涉及原产于中国的贸易鸟类,并评估了它们在确定非法贸易模式时对物种丰富度、系统发育、保护状况、空间分布和生活史特征的采样可能存在的偏差。具体来说,我们评估了在确定非法贸易模式时,三个数据集在物种丰富度、系统发育、保护状况、空间分布和生活史特征方面的采样偏差和完整性。法庭判决包含最大的物种丰富度。在鸟类市场调查和扣押新闻报道中,系统发育聚类程度大于法庭判决,市场调查中检测到鸣禽(即雀形目)的比例更高。扣押新闻数据集中包含高保护优先级的物种比例最高,但物种覆盖率最低。在全国范围内,所有数据集都一致报告了南部和西南部地区的相对较高的物种丰富度,但市场显示出了北方的地理偏差。法庭判决和市场中的物种组成也表现出明显的地理模式。当我们构建模型以模拟鸟类在市场中是否被交易时,存在显著的生态特征偏差。我们的回归模型表明,体型较小、地理分布范围较大、偏好人为栖息地且不受国家保护的物种更有可能被非法交易。我们发现的物种偏差强调了需要了解每个数据集的限制,以便它们能够最佳地为打击 IWT 提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验