Konyalıoğlu Aziz Kemal, Ozcan Tuncay, Bereketli Ilke
Hunter Centre for Entrepreneurship, Strathclyde Business School, University of Strathclyde, Glasgow, UK.
Management Engineering Department, Faculty of Management, Istanbul Technical University, Istanbul, Turkey.
Waste Manag Res. 2025 May;43(5):726-737. doi: 10.1177/0734242X241271065. Epub 2024 Sep 9.
Waste management has gained global importance, aligning with the escalating impact of the COVID-19 pandemic and the associated concerns regarding medical waste, which poses threats to public health and environmental sustainability. In Istanbul, medical waste is considered a significant concern due to the rising volume of this waste, along with challenges in collection, incineration and storage. At this juncture, precise estimation of the waste volume is crucial for resource planning and allocation. This study, thus, aims to estimate the volume of medical waste in Istanbul using the nonlinear grey Bernoulli model (NGBM(1,1)) and the firefly algorithm (FA). In other words, this study introduces a novel hybrid model, termed as FA-NGBM(1,1), for predicting waste amount in Istanbul. Within this model, prediction accuracy is enhanced through a rolling mechanism and parameter optimization. The effectiveness of this model is compared with the classical GM(1,1) model, the GM(1,1) model optimized with the FA (FA-GM(1,1)), the fractional grey model optimized with the FA (FA-FGM(1,1)) and linear regression. Numerical results indicate that the proposed FA-NGBM(1,1) hybrid model yields lower prediction error with a mean absolute percentage error value 3.47% and 2.57%, respectively, for both testing and validation data compared to other prediction algorithms. The uniqueness of this study is rooted in the process of initially optimizing the parameters for the NGBM(1,1) algorithm using the FA for medical waste estimation in Istanbul. This study also forecasts the amount of medical waste in Istanbul for the next 3 years, indicating a dramatic increase. This suggests that new policies should be promptly considered by decision-makers and practitioners.
随着新冠疫情影响的不断升级以及人们对医疗废物相关问题的日益关注,医疗废物管理已在全球范围内变得至关重要,因为医疗废物对公众健康和环境可持续性构成威胁。在伊斯坦布尔,由于医疗废物产生量不断增加,以及在收集、焚烧和储存方面存在挑战,医疗废物成为一个重大问题。在这个关头,精确估算废物量对于资源规划和分配至关重要。因此,本研究旨在使用非线性灰色伯努利模型(NGBM(1,1))和萤火虫算法(FA)来估算伊斯坦布尔的医疗废物量。换句话说,本研究引入了一种新型混合模型,称为FA-NGBM(1,1),用于预测伊斯坦布尔的废物量。在该模型中,通过滚动机制和参数优化提高了预测精度。将该模型的有效性与经典GM(1,1)模型、用FA优化的GM(1,1)模型(FA-GM(1,1))、用FA优化的分数灰色模型(FA-FGM(1,1))以及线性回归进行了比较。数值结果表明,与其他预测算法相比,所提出的FA-NGBM(1,1)混合模型在测试和验证数据上的预测误差更低,平均绝对百分比误差值分别为3.47%和2.57%。本研究的独特之处在于,首先使用FA对NGBM(1,1)算法的参数进行优化,以用于伊斯坦布尔医疗废物的估算。本研究还预测了伊斯坦布尔未来3年的医疗废物量,显示出大幅增长。这表明决策者和从业者应及时考虑新政策。