Suppr超能文献

基于改进粒子群算法的优化灰色伯努利模型用于中国石油消费预测

An MPA-based optimized grey Bernoulli model for China's petroleum consumption forecasting.

作者信息

Wu Wen-Ze, Hu Zhiming, Qi Qin, Zhang Tao

机构信息

School of Economics and Business Administration, Central China Normal University, Wuhan, 430079 China.

NUS Business School, National University of Singapore, 21 Lower Kent Road, Singapore, S119077 Singapore.

出版信息

Complex Intell Systems. 2023;9(1):329-343. doi: 10.1007/s40747-022-00803-9. Epub 2022 Jul 1.

Abstract

The remarkable prediction of petroleum consumption is of significance for energy scheduling and economic development. Considering the uncertainty and volatility of petroleum system, this paper presents a nonlinear grey Bernoulli model with combined fractional accumulated generation operator to forecast China's petroleum consumption and terminal consumption. The newly designed model introduces a combined fractional accumulated generation operator by incorporating the traditional fractional accumulation and conformable fractional accumulation; compared to the old accumulation, the newly optimized accumulation can enhance flexible ability to excavate the development patterns of time-series. In addition, to further improve the prediction performance of the new model, marine predation algorithm is applied to determine the optimal emerging coefficients such as fractional accumulation order. Furthermore, the proposed model is verified by a numerical example of coal consumption; and this newly established model is applied to predict China's petroleum consumption and terminal consumption. Our tests suggest that the designed ONGBM(1,1,k,c) model outperforms the other benchmark models. Finally, we predict China's petroleum consumption in the following years with the aid of the optimized model. According to the forecasts of this paper, some suggestions are provided for policy-makers in the relevant sectors.

摘要

对石油消费量进行精准预测对于能源调度和经济发展具有重要意义。鉴于石油系统的不确定性和波动性,本文提出一种带有组合分数累加生成算子的非线性灰色伯努利模型,用于预测中国的石油消费量和终端消费量。新设计的模型通过结合传统分数累加和一致分数累加引入了组合分数累加生成算子;与旧的累加方式相比,新优化的累加方式能够增强挖掘时间序列发展模式的灵活性。此外,为进一步提高新模型的预测性能,应用海洋捕食算法来确定诸如分数累加阶数等最优新出现系数。此外,通过煤炭消费量的数值例子对所提出的模型进行了验证;并将新建立的模型应用于预测中国的石油消费量和终端消费量。我们的测试表明,所设计的ONGBM(1,1,k,c)模型优于其他基准模型。最后,借助优化后的模型对中国未来几年的石油消费量进行了预测。根据本文的预测,为相关部门的政策制定者提供了一些建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b46/9247900/058f1c00e21a/40747_2022_803_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验