Suppr超能文献

医学机器人中的6G:远程机器人检查系统的网络分配策略开发

6G in medical robotics: development of network allocation strategies for a telerobotic examination system.

作者信息

Kolb Sven, Madden Andrew, Kröger Nicolai, Mehmeti Fidan, Jurosch Franziska, Bernhard Lukas, Kellerer Wolfgang, Wilhelm Dirk

机构信息

TUM School of Medicine and Health, Klinikum rechts der Isar, Research Group MITI, Technical University of Munich, Munich, Germany.

TUM School of Computation, Information and Technology, Chair of Communication Networks, Technical University of Munich, Munich, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jan;20(1):167-178. doi: 10.1007/s11548-024-03260-6. Epub 2024 Sep 9.

Abstract

PURPOSE

Healthcare systems around the world are increasingly facing severe challenges due to problems such as staff shortage, changing demographics and the reliance on an often strongly human-dependent environment. One approach aiming to address these issues is the development of new telemedicine applications. The currently researched network standard 6G promises to deliver many new features which could be beneficial to leverage the full potential of emerging telemedical solutions and overcome the limitations of current network standards.

METHODS

We developed a telerobotic examination system with a distributed robot control infrastructure to investigate the benefits and challenges of distributed computing scenarios, such as fog computing, in medical applications. We investigate different software configurations for which we characterize the network traffic and computational loads and subsequently establish network allocation strategies for different types of modular application functions (MAFs).

RESULTS

The results indicate a high variability in the usage profiles of these MAFs, both in terms of computational load and networking behavior, which in turn allows the development of allocation strategies for different types of MAFs according to their requirements. Furthermore, the results provide a strong basis for further exploration of distributed computing scenarios in medical robotics.

CONCLUSION

This work lays the foundation for the development of medical robotic applications using 6G network architectures and distributed computing scenarios, such as fog computing. In the future, we plan to investigate the capability to dynamically shift MAFs within the network based on current situational demand, which could help to further optimize the performance of network-based medical applications and play a role in addressing the increasingly critical challenges in healthcare.

摘要

目的

由于人员短缺、人口结构变化以及对通常高度依赖人力的环境的依赖等问题,世界各地的医疗保健系统正日益面临严峻挑战。旨在解决这些问题的一种方法是开发新的远程医疗应用程序。目前正在研究的网络标准6G有望提供许多新功能,这可能有助于充分发挥新兴远程医疗解决方案的潜力,并克服当前网络标准的局限性。

方法

我们开发了一种具有分布式机器人控制基础设施的远程机器人检查系统,以研究分布式计算场景(如雾计算)在医疗应用中的益处和挑战。我们研究了不同的软件配置,对其网络流量和计算负载进行了表征,随后为不同类型的模块化应用功能(MAF)制定了网络分配策略。

结果

结果表明,这些MAF的使用概况在计算负载和网络行为方面存在很大差异,这反过来又允许根据不同类型MAF的需求制定分配策略。此外,研究结果为进一步探索医疗机器人中的分布式计算场景提供了有力依据。

结论

这项工作为使用6G网络架构和雾计算等分布式计算场景开发医疗机器人应用奠定了基础。未来,我们计划研究根据当前的情况需求在网络内动态转移MAF的能力,这有助于进一步优化基于网络的医疗应用的性能,并在应对医疗保健领域日益严峻的挑战中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/11759283/95321d808f3f/11548_2024_3260_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验