Suppr超能文献

自动特征选择用于融合专家和数据驱动知识的传感器运动节律脑机接口。

Automatic Feature Selection for Sensorimotor Rhythms Brain-Computer Interface Fusing Expert and Data-Driven Knowledge.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3422-3431. doi: 10.1109/TNSRE.2024.3456591. Epub 2024 Sep 18.

Abstract

Early brain-computer interface (BCI) systems were mainly based on prior neurophysiological knowledge coupled with feedback training, while state-of-the-art interfaces rely on data-driven, machine learning (ML)-oriented methods. Despite the advances in BCI that ML can be credited with, the performance of BCI solutions is still not up to the mark, posing a major barrier to the widespread use of this technology. This paper proposes a novel, automatic feature selection method for BCI able to leverage both data-dependent and expert knowledge to suppress noisy features and highlight the most relevant ones thanks to a fuzzy logic (FL) system. Our approach exploits the capability of FL to increase the reliability of decision-making by fusing heterogeneous information channels while maintaining transparency and simplicity. We show that our method leads to significant improvement in classification accuracy, feature stability and class bias when applied to large motor imagery or attempt datasets including end-users with motor disabilities. We postulate that combining data-driven methods with knowledge derived from neuroscience literature through FL can enhance the performance, explainability, and learnability of BCIs.

摘要

早期的脑机接口 (BCI) 系统主要基于预先的神经生理学知识,并结合反馈训练,而最先进的接口则依赖于数据驱动、面向机器学习 (ML) 的方法。尽管机器学习在 BCI 方面取得了进展,但 BCI 解决方案的性能仍不尽如人意,这是该技术广泛应用的主要障碍。本文提出了一种新的 BCI 自动特征选择方法,该方法能够利用数据相关和专家知识来抑制噪声特征,并通过模糊逻辑 (FL) 系统突出最相关的特征。我们的方法利用了 FL 融合异构信息通道的能力,通过融合异构信息通道来提高决策的可靠性,同时保持透明度和简单性。我们表明,当应用于包括运动障碍患者在内的大型运动想象或尝试数据集时,我们的方法可显著提高分类准确性、特征稳定性和类偏置。我们假设通过 FL 将数据驱动方法与来自神经科学文献的知识相结合,可以提高 BCI 的性能、可解释性和可学习性。

相似文献

9
Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces.联邦电机意象分类的隐私保护脑机接口。
IEEE Trans Neural Syst Rehabil Eng. 2024;32:3442-3451. doi: 10.1109/TNSRE.2024.3457504. Epub 2024 Sep 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验