1 Department of Information Management, National Chung Cheng University, No. 168, Sec. 1, University Rd., Min-Hsiung Township, Chiayi County 621, Taiwan.
2 Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, No. 168, Sec. 1, University Rd. Min-Hsiung Township, Chiayi County 621, Taiwan.
Int J Neural Syst. 2015 Dec;25(8):1550037. doi: 10.1142/S0129065715500379. Epub 2015 Sep 30.
An EEG classifier is proposed for application in the analysis of motor imagery (MI) EEG data from a brain-computer interface (BCI) competition in this study. Applying subject-action-related brainwave data acquired from the sensorimotor cortices, the system primarily consists of artifact and background removal, feature extraction, feature selection and classification. In addition to background noise, the electrooculographic (EOG) artifacts are also automatically removed to further improve the analysis of EEG signals. Several potential features, including amplitude modulation, spectral power and asymmetry ratio, adaptive autoregressive model, and wavelet fuzzy approximate entropy (wfApEn) that can measure and quantify the complexity or irregularity of EEG signals, are then extracted for subsequent classification. Finally, the significant sub-features are selected from feature combination by quantum-behaved particle swarm optimization and then classified by support vector machine (SVM). Compared with feature extraction without wfApEn on MI data from two data sets for nine subjects, the results indicate that the proposed system including wfApEn obtains better performance in average classification accuracy of 88.2% and average number of commands per minute of 12.1, which is promising in the BCI work applications.
本研究提出了一种 EEG 分类器,用于分析脑机接口(BCI)竞赛中的运动想象(MI)EEG 数据。该系统应用于从感觉运动皮层获得的与主体动作相关的脑波数据,主要由伪迹和背景去除、特征提取、特征选择和分类组成。除了背景噪声外,还自动去除眼动(EOG)伪迹,以进一步改善 EEG 信号的分析。然后提取几种潜在的特征,包括幅度调制、频谱功率和不对称比、自适应自回归模型以及可测量和量化 EEG 信号复杂性或不规则性的小波模糊近似熵(wfApEn),以便进行后续分类。最后,通过量子行为粒子群优化从特征组合中选择显著的子特征,然后由支持向量机(SVM)进行分类。与不使用 wfApEn 对来自两个数据集的 9 个主体的 MI 数据进行特征提取相比,结果表明,包括 wfApEn 的所提出的系统在平均分类准确性为 88.2%和平均每分钟命令数为 12.1 方面表现出更好的性能,这在 BCI 工作应用中很有前景。