Suppr超能文献

使用人肺癌组织优化全切片成像扫描设置用于计算机视觉。

Optimization of whole slide imaging scan settings for computer vision using human lung cancer tissue.

机构信息

Data Science Institute, Hasselt University, Hasselt, Belgium.

UHasselt, Lab for Functional Imaging & Research on Stem Cells (FIERCE Lab), BIOMED, Diepenbeek, Belgium.

出版信息

PLoS One. 2024 Sep 9;19(9):e0309740. doi: 10.1371/journal.pone.0309740. eCollection 2024.

Abstract

Digital pathology has become increasingly popular for research and clinical applications. Using high-quality microscopes to produce Whole Slide Images of tumor tissue enables the discovery of insights into biological aspects invisible to the human eye. These are acquired through downstream analyses using spatial statistics and artificial intelligence. Determination of the quality and consistency of these images is needed to ensure accurate outcomes when identifying clinical and subclinical image features. Additionally, the time-intensive process of generating high-volume images results in a trade-off that needs to be carefully balanced. This study aims to determine optimal instrument settings to generate representative images of pathological tissue using digital microscopy. Using various settings, an H&E stained sample was scanned using the ZEISS Axio Scan.Z1. Next, nucleus segmentation was performed on resulting images using StarDist. Subsequently, detections were compared between scans using a matching algorithm. Finally, nucleus-level information was compared between scans. Results indicated that while general matching percentages were high, similarity between information from replicates was relatively low. Additionally, settings resulting in longer scanning times and increased data volume did not increase similarity between replicates. In conclusion, the scan setting ultimately deemed optimal combined consistent and qualitative performance with low throughput time.

摘要

数字病理学在研究和临床应用中越来越受欢迎。使用高质量的显微镜生成肿瘤组织的全切片图像,可以发现人类肉眼无法观察到的生物学方面的见解。这些见解是通过使用空间统计学和人工智能进行下游分析获得的。为了确保在识别临床和亚临床图像特征时获得准确的结果,需要确定这些图像的质量和一致性。此外,生成大容量图像的时间密集型过程需要仔细平衡。本研究旨在确定使用数字显微镜生成病理组织代表性图像的最佳仪器设置。使用各种设置,使用 ZEISS Axio Scan.Z1 扫描 H&E 染色样本。接下来,使用 StarDist 在生成的图像上执行核分割。然后,使用匹配算法比较扫描之间的检测。最后,比较扫描之间的核级信息。结果表明,虽然一般匹配百分比很高,但来自重复的信息之间的相似性相对较低。此外,导致扫描时间延长和数据量增加的设置并没有增加重复之间的相似性。总之,最终认为最佳的扫描设置结合了一致和定性的性能以及低吞吐量时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc2/11383235/4363b6d89d60/pone.0309740.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验