Intensive Care Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China.
College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
Comput Biol Med. 2024 May;174:108219. doi: 10.1016/j.compbiomed.2024.108219. Epub 2024 Mar 11.
Lung cancer is a prevalent form of cancer worldwide, necessitating early and accurate diagnosis for successful treatment. Within medical imaging processing, image segmentation plays a vital role in medical diagnosis. This study applies swarm intelligence algorithms to segment lung cancer pathological images at three levels. The original algorithm incorporates the Whales' search prey mechanism and a random mutation strategy, resulting in an improved version named WDRIME, which aims to enhance convergence speed and avoid local optima (LO). Additionally, the study introduces a multilevel image segmentation method for lung cancer based on the improved algorithm. WDRIME's performance is showcased by comparing it to the state-of-the-art algorithms in IEEE CEC2014. To design a framework for lung cancer image segmentation, this paper combines the WDRIME algorithm with the multilevel segmentation method. Evaluation of the segmentation results employs metrics such as PSNR, SSIM, and FSIM. Overall, the analysis confirms that the proposed algorithm supersedes others regarding convergence speed and accuracy. This model signifies a high-quality segmentation method and offers practical support for in-depth exploration of lung cancer pathological images.
肺癌是一种在全球范围内普遍存在的癌症,需要早期准确的诊断以实现成功的治疗。在医学影像处理中,图像分割在医学诊断中起着至关重要的作用。本研究应用群体智能算法对肺癌病理图像进行了三个层次的分割。原始算法结合了鲸鱼搜索猎物机制和随机突变策略,产生了一个名为 WDRIME 的改进版本,旨在提高收敛速度并避免局部最优(LO)。此外,该研究还引入了一种基于改进算法的肺癌多层次图像分割方法。通过与 IEEE CEC2014 中的最新算法进行比较,展示了 WDRIME 的性能。为了设计肺癌图像分割的框架,本文将 WDRIME 算法与多层次分割方法相结合。使用 PSNR、SSIM 和 FSIM 等指标评估分割结果。总体而言,分析证实该算法在收敛速度和准确性方面优于其他算法。该模型代表了一种高质量的分割方法,为深入探索肺癌病理图像提供了实用支持。