Suppr超能文献

临时新冠重症监护病房的警报管理:回顾性分析及对未来大流行的建议

Alarm Management in Provisional COVID-19 Intensive Care Units: Retrospective Analysis and Recommendations for Future Pandemics.

作者信息

Wunderlich Maximilian Markus, Frey Nicolas, Amende-Wolf Sandro, Hinrichs Carl, Balzer Felix, Poncette Akira-Sebastian

机构信息

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

出版信息

JMIR Med Inform. 2024 Sep 9;12:e58347. doi: 10.2196/58347.

Abstract

BACKGROUND

In response to the high patient admission rates during the COVID-19 pandemic, provisional intensive care units (ICUs) were set up, equipped with temporary monitoring and alarm systems. We sought to find out whether the provisional ICU setting led to a higher alarm burden and more staff with alarm fatigue.

OBJECTIVE

We aimed to compare alarm situations between provisional COVID-19 ICUs and non-COVID-19 ICUs during the second COVID-19 wave in Berlin, Germany. The study focused on measuring alarms per bed per day, identifying medical devices with higher alarm frequencies in COVID-19 settings, evaluating the median duration of alarms in both types of ICUs, and assessing the level of alarm fatigue experienced by health care staff.

METHODS

Our approach involved a comparative analysis of alarm data from 2 provisional COVID-19 ICUs and 2 standard non-COVID-19 ICUs. Through interviews with medical experts, we formulated hypotheses about potential differences in alarm load, alarm duration, alarm types, and staff alarm fatigue between the 2 ICU types. We analyzed alarm log data from the patient monitoring systems of all 4 ICUs to inferentially assess the differences. In addition, we assessed staff alarm fatigue with a questionnaire, aiming to comprehensively understand the impact of the alarm situation on health care personnel.

RESULTS

COVID-19 ICUs had significantly more alarms per bed per day than non-COVID-19 ICUs (P<.001), and the majority of the staff lacked experience with the alarm system. The overall median alarm duration was similar in both ICU types. We found no COVID-19-specific alarm patterns. The alarm fatigue questionnaire results suggest that staff in both types of ICUs experienced alarm fatigue. However, physicians and nurses who were working in COVID-19 ICUs reported a significantly higher level of alarm fatigue (P=.04).

CONCLUSIONS

Staff in COVID-19 ICUs were exposed to a higher alarm load, and the majority lacked experience with alarm management and the alarm system. We recommend training and educating ICU staff in alarm management, emphasizing the importance of alarm management training as part of the preparations for future pandemics. However, the limitations of our study design and the specific pandemic conditions warrant further studies to confirm these findings and to explore effective alarm management strategies in different ICU settings.

摘要

背景

为应对新冠疫情期间的高患者收治率,设立了临时重症监护病房(ICU),配备了临时监测和警报系统。我们试图了解临时ICU设置是否会导致更高的警报负担以及更多工作人员出现警报疲劳。

目的

我们旨在比较德国柏林第二波新冠疫情期间临时新冠ICU和非新冠ICU的警报情况。该研究重点在于测量每日每张床位的警报次数,识别新冠环境中警报频率较高的医疗设备,评估两种类型ICU中警报的中位持续时间,以及评估医护人员经历的警报疲劳程度。

方法

我们的方法包括对来自2个临时新冠ICU和2个标准非新冠ICU的警报数据进行比较分析。通过与医学专家访谈,我们对两种类型ICU在警报负荷、警报持续时间、警报类型和工作人员警报疲劳方面的潜在差异提出假设。我们分析了所有4个ICU患者监测系统的警报日志数据,以推断性评估差异。此外,我们通过问卷调查评估工作人员的警报疲劳,旨在全面了解警报情况对医护人员的影响。

结果

新冠ICU每日每张床位的警报次数显著多于非新冠ICU(P<0.001),且大多数工作人员缺乏警报系统使用经验。两种类型ICU的总体警报中位持续时间相似。我们未发现特定于新冠的警报模式。警报疲劳问卷调查结果表明,两种类型ICU的工作人员都经历了警报疲劳。然而,在新冠ICU工作的医生和护士报告的警报疲劳程度显著更高(P=0.04)。

结论

新冠ICU的工作人员面临更高的警报负荷,且大多数人缺乏警报管理和警报系统使用经验。我们建议对ICU工作人员进行警报管理培训和教育,强调警报管理培训作为未来大流行准备工作一部分的重要性。然而,我们研究设计的局限性和特定的大流行条件需要进一步研究来证实这些发现,并探索不同ICU环境下有效的警报管理策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验