Jiang Zian, Meyer April N, Yang Wei, Donoghue Daniel J
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA.
UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA.
Heliyon. 2024 Aug 13;10(16):e36278. doi: 10.1016/j.heliyon.2024.e36278. eCollection 2024 Aug 30.
Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3.
These studies examined EML4-NTRK3 proteins containing a kinase-dead or WT kinase domain, together with mutations in specific salt bridge residues within the coiled-coil domain. Biological activity was assayed using focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT pathways were analyzed for downstream activation of signaling pathways. Localization of EML4-NTRK3 proteins was examined by immunofluorescence microscopy, and the ability of the EML4 coiled-coil domain to drive protein multimerization was examined by biochemical assays.
Activation of EML4-NTRK3 relies on both the tyrosine kinase activity of NTRK3 and salt-bridge stabilization within the coiled-coil domain of EML4. The tyrosine kinase activity of NTRK3 is essential for the biological activation of EML4-NTRK3. Furthermore, EML4-NTRK3 activates downstream signaling pathways MAPK/ERK, JAK/STAT3 and PKC/PLCγ. The disruption of three specific salt bridge interactions within the EML4 coiled-coil domain of EML4-NTRK3 blocks downstream activation, biological activity, and the ability to hetero-multimerize with EML4. We also demonstrate that EML4-NTRK3 is localized in the cytoplasm and fails to associate with microtubules.
These data suggest potential therapeutic strategies for Infantile Fibrosarcoma cases bearing EML4-NTRK3 fusion through inhibition of salt bridge interactions and disruption of multimerization.
在20%的软组织肉瘤中发现了涉及神经营养受体酪氨酸激酶(NTRKs)的染色体易位。这项工作聚焦于在婴儿纤维肉瘤病例中鉴定出的EML4-NTRK3易位,它包含棘皮动物微管样蛋白4(EML4)的卷曲螺旋多聚化结构域与神经营养受体酪氨酸激酶3(NTRK3)的酪氨酸激酶结构域融合。本研究的目的是测试酪氨酸激酶活性和多聚化对EML4-NTRK3致癌活性的重要性。
这些研究检测了含有激酶失活或野生型激酶结构域的EML4-NTRK3蛋白,以及卷曲螺旋结构域内特定盐桥残基的突变。使用NIH3T3细胞中的集落形成试验检测生物学活性。分析MAPK/ERK、JAK/STAT3和PI3K/AKT信号通路的下游激活情况。通过免疫荧光显微镜检查EML4-NTRK3蛋白的定位,并通过生化试验检测EML4卷曲螺旋结构域驱动蛋白多聚化的能力。
EML4-NTRK3的激活依赖于NTRK3的酪氨酸激酶活性和EML4卷曲螺旋结构域内的盐桥稳定。NTRK3的酪氨酸激酶活性对于EML4-NTRK3的生物学激活至关重要。此外,EML4-NTRK3激活下游信号通路MAPK/ERK、JAK/STAT3和PKC/PLCγ。EML4-NTRK3的EML4卷曲螺旋结构域内三个特定盐桥相互作用的破坏会阻断下游激活、生物学活性以及与EML4异源多聚化的能力。我们还证明EML4-NTRK3定位于细胞质中且不与微管相关。
这些数据表明,对于携带EML4-NTRK3融合的婴儿纤维肉瘤病例,通过抑制盐桥相互作用和破坏多聚化可能存在潜在的治疗策略。