Pastukhov A I, Savinov M S, Zelepukin I V, Babkova J S, Tikhonowski G V, Popov A A, Klimentov S M, Devi A, Patra A, Zavestovskaya I N, Deyev S M, Kabashin A V
Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia.
Nanoscale. 2024 Oct 3;16(38):17893-17907. doi: 10.1039/d4nr02311k.
Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 μg mL concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 μg mL. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number ( = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.
氮化铪纳米颗粒(HfN NPs)在纳米尺度上具有吸引人的等离子体特性,但要制备出在相对生物透明窗口内具有等离子体特征的无毒HfN NPs稳定水分散溶液面临巨大挑战。在此,我们展示了一种解决该问题的方法,即通过在有机溶液中对HfN靶材进行超短(飞秒)激光烧蚀,随后用聚乙二醇(PEG)包覆形成的纳米颗粒,再将其分散在水中。我们表明,所制备的纳米颗粒呈现出等离子体吸收带,其最大值分别在590 nm、620 nm和650 nm左右,这取决于合成环境(分别为乙醇、丙酮和乙腈),与纯HfN NPs预期的情况相比,这些吸收带发生了很大的红移。一系列结构表征研究表明,观察到的红移是由于纳米颗粒核心内部存在缺氮的氮化铪和氮氧化铪相以及氮氧化物包覆层所致。然后我们表明,这些纳米颗粒在808 nm激发下可提供强烈的光热效应,光热转换系数约为62%,这与报道的等离子体纳米颗粒的最佳值相当。MTT和克隆形成试验证明,在浓度高达100 μg/mL时,PEG包覆的HfN NPs对来自不同组织的癌细胞的细胞毒性非常低。我们最终报告了HfN NPs具有强大的光热治疗效果,在NP浓度低于25 μg/mL时,808 nm光照射下细胞死亡率达100%。结合利用Hf的高原子序数( = 72)带来的额外X射线诊疗功能(CT扫描和光子捕获治疗),等离子体HfN NPs有望开发出协同增强的癌症治疗模式。
ACS Appl Mater Interfaces. 2020-8-12
Nanomaterials (Basel). 2023-8-5
J Nanobiotechnology. 2018-10-13
Nanomaterials (Basel). 2022-5-13
ACS Appl Mater Interfaces. 2025-6-18