文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于诊疗应用的硅铁复合纳米颗粒的激光烧蚀合成

Laser-Ablative Synthesis of Silicon-Iron Composite Nanoparticles for Theranostic Applications.

作者信息

Bubnov Alexander A, Belov Vladimir S, Kargina Yulia V, Tikhonowski Gleb V, Popov Anton A, Kharin Alexander Yu, Shestakov Mikhail V, Perepukhov Alexander M, Syuy Alexander V, Volkov Valentyn S, Khovaylo Vladimir V, Klimentov Sergey M, Kabashin Andrei V, Timoshenko Victor Yu

机构信息

Institute of Engineering Physics for Biomedicine (PhysBio), National Nuclear Research University MEPhI, 115409 Moscow, Russia.

Endocrinology Research Centre, Dmitry Ulyanov Street 11, 292236 Moscow, Russia.

出版信息

Nanomaterials (Basel). 2023 Aug 5;13(15):2256. doi: 10.3390/nano13152256.


DOI:10.3390/nano13152256
PMID:37570573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10421319/
Abstract

The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use. From structural analyses, it was shown that the formed Si-Fe NPs have a spherical shape and sizes ranging from 5 to 150 nm, with the presence of two characteristic maxima around 20 nm and 90 nm in the size distribution. They are mostly composed of silicon with the presence of a significant iron silicide content and iron oxide inclusions. Our studies also show that the NPs exhibit magnetic properties due to the presence of iron ions in their composition, which makes the formation of contrast in magnetic resonance imaging (MRI) possible, as it is verified by magnetic resonance relaxometry at the proton resonance frequency. In addition, the Si-Fe NPs are characterized by strong optical absorption in the window of relative transparency of bio-tissue (650-950 nm). Benefiting from such absorption, the Si-Fe NPs provide strong photoheating in their aqueous suspensions under continuous wave laser excitation at 808 nm. The NP-induced photoheating is described by a photothermal conversion efficiency of 33-42%, which is approximately 3.0-3.3 times larger than that for pure laser-synthesized Si NPs, and it is explained by the presence of iron silicide in the NP composition. Combining the strong photothermal effect and MRI functionality, the synthesized Si-Fe NPs promise a major advancement of modalities for cancer theranostics, including MRI-guided photothermal therapy and surgery.

摘要

在一种生物相容性纳米制剂中结合光热和磁功能,为开发用于生物医学治疗诊断的多功能试剂奠定了有吸引力的基础。在此,我们报告了通过飞秒激光在丙酮中对由硅和铁组成的混合靶材进行烧蚀的方法,制备用于治疗诊断应用的硅铁(Si-Fe)复合纳米颗粒(NPs)。然后将这些纳米颗粒转移到水中以便后续用于生物学研究。结构分析表明,所形成的Si-Fe纳米颗粒呈球形,尺寸范围为5至150纳米,在尺寸分布中存在两个特征最大值,分别在20纳米和90纳米左右。它们主要由硅组成,含有大量的硅化铁成分和氧化铁夹杂物。我们的研究还表明,由于其组成中存在铁离子,这些纳米颗粒具有磁性,这使得在磁共振成像(MRI)中形成对比度成为可能,质子共振频率下的磁共振弛豫测量证实了这一点。此外,Si-Fe纳米颗粒在生物组织相对透明的窗口(650 - 950纳米)具有强烈的光吸收特性。得益于这种吸收,Si-Fe纳米颗粒在808纳米连续波激光激发下,在其水悬浮液中提供强烈的光热效应。纳米颗粒诱导的光热效应由33% - 42%的光热转换效率来描述,这比纯激光合成的硅纳米颗粒的光热转换效率大约高3.0 - 3.3倍,这可以通过纳米颗粒组成中存在硅化铁来解释。结合强大的光热效应和MRI功能,合成的Si-Fe纳米颗粒有望在癌症治疗诊断方式上取得重大进展,包括MRI引导的光热疗法和手术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/e2f3be6d6f1e/nanomaterials-13-02256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/f527e91d4991/nanomaterials-13-02256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/d024ee9a1249/nanomaterials-13-02256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/6cfe1e5c618e/nanomaterials-13-02256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/bde355927dc8/nanomaterials-13-02256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/e2f3be6d6f1e/nanomaterials-13-02256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/f527e91d4991/nanomaterials-13-02256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/d024ee9a1249/nanomaterials-13-02256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/6cfe1e5c618e/nanomaterials-13-02256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/bde355927dc8/nanomaterials-13-02256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d7/10421319/e2f3be6d6f1e/nanomaterials-13-02256-g005.jpg

相似文献

[1]
Laser-Ablative Synthesis of Silicon-Iron Composite Nanoparticles for Theranostic Applications.

Nanomaterials (Basel). 2023-8-5

[2]
Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy.

Nanoscale. 2024-10-3

[3]
Laser-Ablative Synthesis of Stable Aqueous Solutions of Elemental Bismuth Nanoparticles for Multimodal Theranostic Applications.

Nanomaterials (Basel). 2020-7-26

[4]
Germanium Nanoparticles Prepared by Laser Ablation in Low Pressure Helium and Nitrogen Atmosphere for Biophotonic Applications.

Materials (Basel). 2022-8-2

[5]
Green synthesis of mesoporous and biodegradable iron silicide nanoparticles for photothermal cancer therapy.

J Mater Chem B. 2023-5-10

[6]
Monodisperse magnetic nanoparticles for theranostic applications.

Acc Chem Res. 2011-6-10

[7]
Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications.

Nanomaterials (Basel). 2021-2-26

[8]
Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications.

Sci Rep. 2019-2-4

[9]
Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications.

Sci Rep. 2022-6-1

[10]
Copper Manganese Sulfide Nanoplates: A New Two-Dimensional Theranostic Nanoplatform for MRI/MSOT Dual-Modal Imaging-Guided Photothermal Therapy in the Second Near-Infrared Window.

Theranostics. 2017-10-17

引用本文的文献

[1]
Feasibility analysis and development trend of nanomaterials for the treatment of pancreatic cancer.

Discov Nano. 2025-5-12

[2]
Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings.

Nanomaterials (Basel). 2024-4-8

[3]
Editorial: Special Issue "Laser Synthesis and Processing of Nanostructured Materials".

Nanomaterials (Basel). 2024-2-11

本文引用的文献

[1]
Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.

ACS Omega. 2023-3-30

[2]
Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.

Nanoscale Adv. 2019-4-23

[3]
Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range.

Biosensors (Basel). 2022-8-3

[4]
Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications.

Sci Rep. 2022-6-1

[5]
Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions.

Nanomaterials (Basel). 2022-5-13

[6]
Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers.

Int J Mol Sci. 2022-4-29

[7]
Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging.

Bioact Mater. 2021-10-19

[8]
Laser-Ablative Synthesis of Ultrapure Magneto-Plasmonic Core-Satellite Nanocomposites for Biomedical Applications.

Nanomaterials (Basel). 2022-2-15

[9]
Photoluminescent nanocluster-based probes for bioimaging applications.

Photochem Photobiol Sci. 2022-5

[10]
The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.

J Pers Med. 2021-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索