Suppr超能文献

利用多模态特征对教育 VR 环境中的内部和外部干扰进行分类。

Classification of Internal and External Distractions in an Educational VR Environment Using Multimodal Features.

出版信息

IEEE Trans Vis Comput Graph. 2024 Nov;30(11):7332-7342. doi: 10.1109/TVCG.2024.3456207. Epub 2024 Oct 11.

Abstract

Virtual reality (VR) can potentially enhance student engagement and memory retention in the classroom. However, distraction among participants in a VR-based classroom is a significant concern. Several factors, including mind wandering, external noise, stress, etc., can cause students to become internally and/or externally distracted while learning. To detect distractions, single or multi-modal features can be used. A single modality is found to be insufficient to detect both internal and external distractions, mainly because of individual variability. In this work, we investigated multi-modal features: eye tracking and EEG data, to classify the internal and external distractions in an educational VR environment. We set up our educational VR environment and equipped it for multi-modal data collection. We implemented different machine learning (ML) methods, including k-nearest-neighbors (kNN), Random Forest (RF), one-dimensional convolutional neural network - long short-term memory (1 D-CNN-LSTM), and two-dimensional convolutional neural networks (2D-CNN) to classify participants' internal and external distraction states using the multi-modal features. We performed cross-subject, cross-session, and gender-based grouping tests to evaluate our models. We found that the RF classifier achieves the highest accuracy over 83% in the cross-subject test, around 68% to 78% in the cross-session test, and around 90% in the gender-based grouping test compared to other models. SHAP analysis of the extracted features illustrated greater contributions from the occipital and prefrontal regions of the brain, as well as gaze angle, gaze origin, and head rotation features from the eye tracking data.

摘要

虚拟现实 (VR) 有可能提高课堂中学生的参与度和记忆保留。然而,VR 课堂中的参与者分心是一个重大问题。多种因素,包括心不在焉、外部噪音、压力等,可能导致学生在学习过程中内在地和/或外在地分心。为了检测分心,可使用单一或多模态特征。发现单一模态不足以检测内在和外在的分心,主要是因为个体的可变性。在这项工作中,我们研究了多模态特征:眼动追踪和 EEG 数据,以在教育 VR 环境中分类内在和外在的分心。我们建立了我们的教育 VR 环境,并配备了多模态数据采集设备。我们实施了不同的机器学习 (ML) 方法,包括 k-最近邻 (kNN)、随机森林 (RF)、一维卷积神经网络-长短期记忆 (1D-CNN-LSTM) 和二维卷积神经网络 (2D-CNN),以使用多模态特征分类参与者的内在和外在分心状态。我们进行了跨主体、跨会话和基于性别的分组测试,以评估我们的模型。我们发现,RF 分类器在跨主体测试中达到了 83%以上的最高精度,在跨会话测试中达到了 68%至 78%左右,在基于性别的分组测试中达到了 90%左右,优于其他模型。提取特征的 SHAP 分析表明,大脑的枕叶和前额叶区域以及眼动追踪数据的注视角度、注视原点和头部旋转特征的贡献更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验