Fan Runze, Shi Xuehuai, Wang Kangyu, Ma Qixiang, Wang Lili
IEEE Trans Vis Comput Graph. 2024 Nov;30(11):7097-7106. doi: 10.1109/TVCG.2024.3456157. Epub 2024 Oct 10.
We propose a new scene-aware foveated rendering method, which incorporates the scene awareness and characteristics of the human visual system into the mapping-based foveated rendering framework. First, we generate the conservative visual importance map that encodes the visual features of the scene, visual acuity, and gaze motion. Second, we construct the pixel size control map using a convolution kernel method. Third, we utilize the pixel size control map to guide the foveated rendering. At last, a temporal coherent refinement strategy is used to maintain the smooth foveated rendering for the adjacent frames. Compared to the state-of-the-art mapping-based foveated rendering methods using the same compression ratio, our method achieves smaller MSE, higher PSNR, and SSIM in the fovea, periphery, salient regions, and the whole image. We also conducted user studies, and the results proved that the perceptual quality of our method has a high visual similarity with the around truth rendered with the full resolution.
我们提出了一种新的场景感知中心凹渲染方法,该方法将场景感知和人类视觉系统的特性融入基于映射的中心凹渲染框架中。首先,我们生成保守的视觉重要性图,该图对场景的视觉特征、视敏度和注视运动进行编码。其次,我们使用卷积核方法构建像素大小控制图。第三,我们利用像素大小控制图来指导中心凹渲染。最后,采用时间相干细化策略来保持相邻帧的平滑中心凹渲染。与使用相同压缩率的基于映射的最新中心凹渲染方法相比,我们的方法在中央凹、周边、显著区域和整个图像中实现了更小的均方误差(MSE)、更高的峰值信噪比(PSNR)和结构相似性指数(SSIM)。我们还进行了用户研究,结果证明我们方法的感知质量与全分辨率渲染的真实情况具有高度的视觉相似性。