Suppr超能文献

土豚:树状图、时间序列和图像的复合可视化

Aardvark: Composite Visualizations of Trees, Time-Series, and Images.

作者信息

Lange Devin, Judson-Torres Robert, Zangle Thomas A, Lex Alexander

出版信息

IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.

Abstract

How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.

摘要

癌细胞是如何生长、分裂、增殖和死亡的?药物又是如何影响这些过程的?这些都是难题,我们可以尝试通过结合时间序列显微镜实验、分类算法和数据可视化来回答。然而,收集这类数据并应用算法对细胞进行分割、跟踪以及构建增殖谱系容易出错;而且识别这些错误可能具有挑战性,因为这通常需要交叉核对多种数据类型。同样,分析和传达结果需要将不同的数据类型整合为一个连贯的叙述。针对此类数据的最先进可视化方法在不同视图中使用独立的折线图、树形图和图像。然而,这种空间分离要求这些图表的观看者在脑海中整合相关的数据片段。为了简化这项具有挑战性的任务,我们描述了将细胞图像、时间序列数据和树形数据编织成一个连贯可视化的设计原则。我们的设计原则基于选择一种驱动布局的主要数据类型,并将其他数据类型整合到该布局中。然后,我们介绍了Aardvark,这是一个利用这些原则来实现新颖可视化技术的系统。基于Aardvark,我们在一系列案例研究中展示了这些方法在发现、交流和数据调试方面的效用。

相似文献

1
Aardvark: Composite Visualizations of Trees, Time-Series, and Images.土豚:树状图、时间序列和图像的复合可视化
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.
4
Interactive Visualization of Hierarchically Structured Data.分层结构数据的交互式可视化
J Comput Graph Stat. 2018;27(3):553-563. doi: 10.1080/10618600.2017.1392866. Epub 2017 Oct 18.
9
How information visualization novices construct visualizations.信息可视化新手如何构建可视化。
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):943-52. doi: 10.1109/TVCG.2010.164.

本文引用的文献

4
Vimo - Visual Analysis of Neuronal Connectivity Motifs.Vimo - 神经元连接模式的视觉分析
IEEE Trans Vis Comput Graph. 2023 Oct 26;PP. doi: 10.1109/TVCG.2023.3327388.
5
Grave-to-cradle: human embryonic lineage tracing from the postmortem body.从尸体到摇篮:人类胚胎谱系追踪。
Exp Mol Med. 2023 Jan;55(1):13-21. doi: 10.1038/s12276-022-00912-y. Epub 2023 Jan 4.
6
GenoREC: A Recommendation System for Interactive Genomics Data Visualization.GenoREC:交互式基因组学数据可视化推荐系统。
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):570-580. doi: 10.1109/TVCG.2022.3209407. Epub 2022 Dec 21.
9
Multi-View Design Patterns and Responsive Visualization for Genomics Data.多视图设计模式与基因组学数据的响应式可视化
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):559-569. doi: 10.1109/TVCG.2022.3209398. Epub 2022 Dec 21.
10
Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis.多音性:单细胞数据分析的交互式迁移学习框架。
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):591-601. doi: 10.1109/TVCG.2022.3209408. Epub 2022 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验