Lange Devin, Judson-Torres Robert, Zangle Thomas A, Lex Alexander
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.
How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.
癌细胞是如何生长、分裂、增殖和死亡的?药物又是如何影响这些过程的?这些都是难题,我们可以尝试通过结合时间序列显微镜实验、分类算法和数据可视化来回答。然而,收集这类数据并应用算法对细胞进行分割、跟踪以及构建增殖谱系容易出错;而且识别这些错误可能具有挑战性,因为这通常需要交叉核对多种数据类型。同样,分析和传达结果需要将不同的数据类型整合为一个连贯的叙述。针对此类数据的最先进可视化方法在不同视图中使用独立的折线图、树形图和图像。然而,这种空间分离要求这些图表的观看者在脑海中整合相关的数据片段。为了简化这项具有挑战性的任务,我们描述了将细胞图像、时间序列数据和树形数据编织成一个连贯可视化的设计原则。我们的设计原则基于选择一种驱动布局的主要数据类型,并将其他数据类型整合到该布局中。然后,我们介绍了Aardvark,这是一个利用这些原则来实现新颖可视化技术的系统。基于Aardvark,我们在一系列案例研究中展示了这些方法在发现、交流和数据调试方面的效用。