Suppr超能文献

毗邻性分析:用于多重组织成像数据的可视化空间邻域分析。

Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data.

出版信息

IEEE Trans Vis Comput Graph. 2023 Jan;29(1):106-116. doi: 10.1109/TVCG.2022.3209378. Epub 2022 Dec 16.

Abstract

New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and metastasis, as well as following treatment. Yet, existing analysis approaches focus on investigating small tissue samples on a per-cell basis, not taking into account the spatial proximity of cells, which indicates cell-cell interaction and specific biological processes in the larger cancer microenvironment. We present Visinity, a scalable visual analytics system to analyze cell interaction patterns across cohorts of whole-slide multiplexed tissue images. Our approach is based on a fast regional neighborhood computation, leveraging unsupervised learning to quantify, compare, and group cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed in an exploratory and confirmatory workflow. Users can explore spatial patterns present across tissues through a scalable image viewer and coordinated views highlighting the neighborhood composition and spatial arrangements of cells. To verify or refine existing hypotheses, users can query for specific patterns to determine their presence and statistical significance. Findings can be interactively annotated, ranked, and compared in the form of small multiples. In two case studies with biomedical experts, we demonstrate that Visinity can identify common biological processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor interactions.

摘要

新的高度多重化成像技术使研究组织细节成为可能。这些方法越来越多地被用于了解癌细胞和免疫反应在肿瘤发展、进展和转移过程中以及治疗后的变化。然而,现有的分析方法侧重于逐个细胞地研究小的组织样本,而没有考虑到细胞的空间邻近性,这表明细胞间的相互作用和更大的癌症微环境中的特定生物学过程。我们提出了 Visinity,这是一种可扩展的可视化分析系统,用于分析整个幻灯片多重化组织图像队列中的细胞相互作用模式。我们的方法基于快速的区域邻域计算,利用无监督学习来量化、比较和根据其周围细胞邻域对细胞进行分组。这些邻域可以在探索性和验证性工作流程中进行可视化分析。用户可以通过可扩展的图像查看器和突出显示细胞邻域组成和空间排列的协调视图来探索组织中存在的空间模式。为了验证或完善现有的假设,用户可以查询特定模式以确定其存在和统计显著性。发现可以以小倍数的形式进行交互式注释、排名和比较。在与生物医学专家的两项案例研究中,我们证明了 Visinity 可以识别人扁桃体中的常见生物学过程,并揭示新的白细胞网络和免疫-肿瘤相互作用。

相似文献

5
Synplex: In Silico Modeling of the Tumor Microenvironment From Multiplex Images.Synplex:从多重图像对肿瘤微环境进行计算建模。
IEEE Trans Med Imaging. 2023 Oct;42(10):3048-3058. doi: 10.1109/TMI.2023.3273950. Epub 2023 Oct 2.
9
Visual cohort comparison for spatial single-cell omics-data.空间单细胞组学数据的可视化队列比较
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):733-743. doi: 10.1109/TVCG.2020.3030336. Epub 2021 Jan 28.

引用本文的文献

1
Spatial Multiplexing and Omics.空间复用与组学
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
9
10
Aardvark: Composite Visualizations of Trees, Time-Series, and Images.土豚:树状图、时间序列和图像的复合可视化
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.

本文引用的文献

4
Spatial components of molecular tissue biology.分子组织生物学的空间组成部分。
Nat Biotechnol. 2022 Mar;40(3):308-318. doi: 10.1038/s41587-021-01182-1. Epub 2022 Feb 7.
6
Cell segmentation in imaging-based spatial transcriptomics.基于成像的空间转录组学中的细胞分割
Nat Biotechnol. 2022 Mar;40(3):345-354. doi: 10.1038/s41587-021-01044-w. Epub 2021 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验