Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
Neuroscience Institute, New York University Langone Health, New York, New York, United States of America.
PLoS Comput Biol. 2024 Sep 10;20(9):e1012379. doi: 10.1371/journal.pcbi.1012379. eCollection 2024 Sep.
Understanding sensory processing involves relating the stimulus space, its neural representation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly in the complexity of the underlying odor input space and perceptual responses. Based on the recently proposed primacy model for concentration invariant odor identity representation and a few assumptions, we have developed a theoretical framework for mapping the odor input space to the response properties of olfactory receptors. We analyze a geometrical structure containing odor representations in a multidimensional space of receptor affinities and describe its low-dimensional implementation, the primacy hull. We propose the implications of the primacy hull for the structure of feedforward connectivity in early olfactory networks. We test the predictions of our theory by comparing the existing receptor-ligand affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Kenyon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets of olfactory receptors in agreement with the primacy theory.
理解感觉处理包括关联刺激空间、其神经表示和感知质量。在嗅觉中,建立这些联系的困难部分在于基础气味输入空间和感知反应的复杂性。基于最近提出的用于表示浓度不变的气味身份的首要模型和一些假设,我们已经开发了一种将气味输入空间映射到嗅觉受体响应特性的理论框架。我们分析了一个包含在受体亲和力多维空间中的气味表示的几何结构,并描述了其低维实现,即首要包络。我们提出了首要包络对早期嗅觉网络中前馈连接结构的影响。我们通过比较在果蝇嗅觉系统中获得的现有受体-配体亲和力和连接数据来检验我们理论的预测。我们发现昆虫蘑菇体的 Kenyon 细胞整合了来自高亲和力(首要)组嗅觉受体的输入,这与首要理论一致。