Kepple Daniel R, Giaffar Hamza, Rinberg Dmitry, Koulakov Alexei A
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A.
Neuroscience Institute, New York University School of Medicine, New York, NY 10016, U.S.A.
Neural Comput. 2019 Apr;31(4):710-737. doi: 10.1162/neco_a_01175. Epub 2019 Feb 14.
In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features. For example, in what is known as the primacy coding model, odorant identities are represented by the conditions that some odorant receptors are activated more strongly than others. Because, in this scheme, odorant identity depends only on the relative amplitudes of olfactory receptor responses, identity is invariant to changes in both intensity and monotonic nonlinear transformations of its neuronal responses. Here we show that sparse vectors representing odorant mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In the primacy model, this minimization is performed under the constraint that some receptors respond to a given odorant more strongly than others. Using duality transformation, we show that this constrained optimization problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of primacy and other constraints. The connectivity in such a dual network resembles known features of connectivity in olfactory circuits. We thus propose that networks in the piriform cortex implement dual computations to compute odorant identity with the sparse activities of individual neurons representing Lagrange coefficients. More generally, we propose that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain hypothesis. We show such a formulation is well suited to solve problems with multiple interacting relative constraints.
在嗅觉系统中,尽管气味浓度、时间和背景存在显著差异,但气味感知仍能保持其特性。我们研究了一种编码强度不变刺激特性的新策略,该策略基于表示刺激特征的相对值而非绝对值。例如,在所谓的首位编码模型中,气味特性由某些气味受体比其他受体被更强烈激活的条件来表示。因为在这个方案中,气味特性仅取决于嗅觉受体反应的相对幅度,所以特性对于强度变化及其神经元反应的单调非线性变换都是不变的。在这里,我们表明表示气味混合物的稀疏向量可以在压缩感知框架中通过弹性网损失最小化来恢复。在首位模型中,这种最小化是在某些受体对给定气味的反应比其他受体更强的约束下进行的。通过对偶变换,我们表明这个约束优化问题可以由一个神经网络解决,其李雅普诺夫函数表示对偶拉格朗日函数,其神经反应表示首位和其他约束的拉格朗日系数。这样一个对偶网络中的连接性类似于嗅觉回路中已知的连接性特征。因此,我们提出梨状皮层中的网络执行对偶计算,以利用表示拉格朗日系数的单个神经元的稀疏活动来计算气味特性。更一般地说,我们提出稀疏神经元放电率可能表示拉格朗日乘子,我们将其称为对偶脑假说。我们表明这种公式非常适合解决具有多个相互作用相对约束的问题。