Suppr超能文献

跨物种转录分析中跨研究标准化方法的比较与发展。

Comparison and development of cross-study normalization methods for inter-species transcriptional analysis.

机构信息

Dept of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Dept of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

PLoS One. 2024 Sep 10;19(9):e0307997. doi: 10.1371/journal.pone.0307997. eCollection 2024.

Abstract

Performing joint analysis of gene expression datasets from different experiments can present challenges brought on by multiple factors-differences in equipment, protocols, climate etc. "Cross-study normalization" is a general term for transformations aimed at eliminating such effects, thus making datasets more comparable. However, joint analysis of datasets from different species is rarely done, and there are no dedicated normalization methods for such inter-species analysis. In order to test the usefulness of cross-studies normalization methods for inter-species analysis, we first applied three cross-study normalization methods, EB, DWD and XPN, to RNA sequencing datasets from different species. We then developed a new approach to evaluate the performance of cross-study normalization in eliminating experimental effects, while also maintaining the biologically significant differences between species and conditions. Our results indicate that all normalization methods performed relatively well in the cross-species setting. We found XPN to be better at reducing experimental differences, and found EB to be better at preserving biological differences. Still, according to our in-silico experiments, in all methods it is not possible to enforce the preservation of the biological differences in the normalization process. In addition to the study above, in this work we propose a new dedicated cross-studies and cross-species normalization method. Our aim is to address the shortcoming mentioned above: in the normalization process, we wish to reduce the experimental differences while preserving the biological differences. We term our method as CSN, and base it on the performance evaluation criteria mentioned above. Repeating the same experiments, the CSN method obtained a better and more balanced conservation of biological differences within the datasets compared to existing methods. To summarize, we demonstrate the usefulness of cross-study normalization methods in the inter-species settings, and suggest a dedicated cross-study cross-species normalization method that will hopefully open the way to the development of improved normalization methods for the inter-species settings.

摘要

对来自不同实验的基因表达数据集进行联合分析可能会带来由多种因素带来的挑战——设备、方案、气候等方面的差异。“跨研究标准化”是指旨在消除这些影响从而使数据集更具可比性的转换的统称。然而,很少对来自不同物种的数据集进行联合分析,也没有专门针对这种种间分析的标准化方法。为了测试跨研究标准化方法在种间分析中的有用性,我们首先将三种跨研究标准化方法 EB、DWD 和 XPN 应用于来自不同物种的 RNA 测序数据集。然后,我们开发了一种新方法来评估跨研究标准化在消除实验效应的同时保持物种和条件之间生物学上显著差异的性能。我们的结果表明,所有标准化方法在种间设置中都表现相对较好。我们发现 XPN 在减少实验差异方面表现更好,而 EB 在保留生物学差异方面表现更好。尽管如此,根据我们的模拟实验,在所有方法中,都不可能在标准化过程中强制保留生物学差异。除了上述研究之外,在这项工作中,我们提出了一种新的专用跨研究和跨物种标准化方法。我们的目标是解决上述缺点:在标准化过程中,我们希望在保留生物学差异的同时减少实验差异。我们将我们的方法命名为 CSN,并基于上述性能评估标准。重复相同的实验,CSN 方法在数据集内获得了更好和更平衡的生物学差异保留,与现有方法相比。总之,我们证明了跨研究标准化方法在种间设置中的有用性,并提出了一种专用的跨研究跨物种标准化方法,希望为种间设置的改进标准化方法的开发开辟道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验