Suppr超能文献

无细胞非平衡组装用于分级蛋白/肽纳米柱。

Cell-Free Nonequilibrium Assembly for Hierarchical Protein/Peptide Nanopillars.

机构信息

Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02453, United States.

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.

出版信息

J Am Chem Soc. 2024 Sep 25;146(38):26102-26112. doi: 10.1021/jacs.4c06775. Epub 2024 Sep 10.

Abstract

Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.

摘要

细胞内含有复杂的蛋白质纳米结构,但在细胞外复制这些结构存在挑战。例如,胚胎中观察到的垂直纤维连接蛋白柱就是一个例子。在这里,我们展示了使用非平衡自组装来创建无细胞的垂直纤维连接蛋白柱模拟物。我们的方法利用酶响应的磷酸肽来组装成纳米管。酶的作用触发肽组装的形状变化,驱动纤维连接蛋白纳米柱垂直生长成束。这些束状结构,其中的肽纳米管作为模板来重塑纤维连接蛋白,可以招募胶原蛋白,根据其类型形成聚集体或束状结构。纳米柱的形成依赖于酶催化的非平衡自组装,并且受酶、蛋白质、肽的浓度、肽的结构和肽组装形态的控制。冷冻电镜显示去磷酸化后纳米管出乎意料的变薄和堆积,表明在组装过程中存在复杂的雕刻过程。我们的研究展示了一种无细胞的方法,用于构建具有方向性和组成的复杂多蛋白纳米结构。

相似文献

1
Cell-Free Nonequilibrium Assembly for Hierarchical Protein/Peptide Nanopillars.无细胞非平衡组装用于分级蛋白/肽纳米柱。
J Am Chem Soc. 2024 Sep 25;146(38):26102-26112. doi: 10.1021/jacs.4c06775. Epub 2024 Sep 10.
5
Exploiting terminal charged residue shift for wide bilayer nanotube assembly.利用末端带电残基位移实现宽双层纳米管组装。
J Colloid Interface Sci. 2023 Jan;629(Pt A):1-10. doi: 10.1016/j.jcis.2022.08.104. Epub 2022 Aug 17.
10
Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides.环状肽的分子自组装和超分子化学。
Chem Rev. 2021 Nov 24;121(22):13936-13995. doi: 10.1021/acs.chemrev.0c01291. Epub 2021 May 3.

本文引用的文献

2
Supramolecular polymers form tactoids through liquid-liquid phase separation.超分子聚合物通过液-液相分离形成原纤。
Nature. 2024 Feb;626(8001):1011-1018. doi: 10.1038/s41586-024-07034-7. Epub 2024 Feb 28.
3
The in vitro culture of mammalian embryos.哺乳动物胚胎的体外培养。
Nat Methods. 2023 Dec;20(12):1855-1858. doi: 10.1038/s41592-023-02071-y.
4
Enzyme-Instructed Intracellular Peptide Assemblies.酶指导的细胞内肽组装。
Acc Chem Res. 2023 Nov 7;56(21):3076-3088. doi: 10.1021/acs.accounts.3c00542. Epub 2023 Oct 26.
5
Tektin makes a microtubule a "micropillar".微管蛋白使微管成为“微柱”。
Cell. 2023 Jun 22;186(13):2725-2727. doi: 10.1016/j.cell.2023.05.018.
7
Cell spheroid creation by transcytotic intercellular gelation.通过跨细胞凝胶化作用形成细胞球体。
Nat Nanotechnol. 2023 Sep;18(9):1094-1104. doi: 10.1038/s41565-023-01401-7. Epub 2023 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验