Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02453, United States.
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
J Am Chem Soc. 2024 Sep 25;146(38):26102-26112. doi: 10.1021/jacs.4c06775. Epub 2024 Sep 10.
Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.
细胞内含有复杂的蛋白质纳米结构,但在细胞外复制这些结构存在挑战。例如,胚胎中观察到的垂直纤维连接蛋白柱就是一个例子。在这里,我们展示了使用非平衡自组装来创建无细胞的垂直纤维连接蛋白柱模拟物。我们的方法利用酶响应的磷酸肽来组装成纳米管。酶的作用触发肽组装的形状变化,驱动纤维连接蛋白纳米柱垂直生长成束。这些束状结构,其中的肽纳米管作为模板来重塑纤维连接蛋白,可以招募胶原蛋白,根据其类型形成聚集体或束状结构。纳米柱的形成依赖于酶催化的非平衡自组装,并且受酶、蛋白质、肽的浓度、肽的结构和肽组装形态的控制。冷冻电镜显示去磷酸化后纳米管出乎意料的变薄和堆积,表明在组装过程中存在复杂的雕刻过程。我们的研究展示了一种无细胞的方法,用于构建具有方向性和组成的复杂多蛋白纳米结构。