SynBot 是一款开源的图像分析软件,用于自动定量突触。
SynBot is an open-source image analysis software for automated quantification of synapses.
机构信息
Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
出版信息
Cell Rep Methods. 2024 Sep 16;4(9):100861. doi: 10.1016/j.crmeth.2024.100861. Epub 2024 Sep 9.
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
神经元连接的精确形成,即突触的形成,对大脑功能至关重要。因此,突触发生机制一直是神经科学的主要关注点之一。免疫组织化学是观察突触的常用工具。因此,从光学显微镜图像中定量突触的数量可以筛选实验操作对突触发育的影响。尽管这种方法很有用,但它与低通量分析方法相关联,这些方法难以学习,并且结果在实验者之间存在差异,尤其是在分析脑组织的嘈杂图像时。我们开发了一个基于 ImageJ 的开源软件 SynBot,通过自动化分析来解决这些技术瓶颈。SynBot 将 ilastik 和 SynQuant 的先进算法集成在一起,用于突触小体识别的精确阈值处理,并且用户可以轻松修改代码。使用该软件将允许在健康和患病的神经系统中快速和可重复地筛选突触表型。