Suppr超能文献

HepaCAM 控制星形胶质细胞的自组织和偶联。

HepaCAM controls astrocyte self-organization and coupling.

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Neuron. 2021 Aug 4;109(15):2427-2442.e10. doi: 10.1016/j.neuron.2021.05.025. Epub 2021 Jun 24.

Abstract

Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology.

摘要

星形胶质细胞广泛浸润神经间质,以调节突触发育和功能的关键方面。这个过程是通过星形胶质细胞和神经元之间的细胞黏附分子的细胞间相互作用来调节的。星形胶质细胞如何协调彼此之间的发育过程,以解析突触神经间质并形成不重叠的区域尚不清楚。在这里,我们确定了一个调节发育过程中星形胶质细胞-星形胶质细胞相互作用的分子机制,以协调星形胶质细胞形态发生和缝隙连接偶联。我们表明,HepaCAM 是一种与疾病相关的、富含星形胶质细胞的细胞黏附分子,它调节星形胶质细胞对区域的竞争和发育中小鼠皮层中星形胶质细胞形态的复杂性。此外,条件性敲除发育中的星形胶质细胞中的 Hepacam 会显著损害星形胶质细胞之间的缝隙连接偶联,并破坏突触兴奋和抑制之间的平衡。HEPACAM 中的突变会导致人类巨脑性脑白质病伴皮质下囊肿。因此,我们的发现表明,星形胶质细胞自组织机制的破坏可能是神经病理学的一个潜在原因。

相似文献

1
HepaCAM controls astrocyte self-organization and coupling.
Neuron. 2021 Aug 4;109(15):2427-2442.e10. doi: 10.1016/j.neuron.2021.05.025. Epub 2021 Jun 24.
2
6
Astrocyte-restricted disruption of connexin-43 impairs neuronal plasticity in mouse barrel cortex.
Eur J Neurosci. 2014 Jan;39(1):35-45. doi: 10.1111/ejn.12394. Epub 2013 Oct 21.
7
Amyloid-β regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes.
J Biol Chem. 2020 Oct 30;295(44):15097-15111. doi: 10.1074/jbc.RA120.013705. Epub 2020 Aug 31.
8
Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning.
Cell Rep. 2022 Mar 8;38(10):110484. doi: 10.1016/j.celrep.2022.110484.
9
Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis.
Nature. 2017 Nov 8;551(7679):192-197. doi: 10.1038/nature24638.

引用本文的文献

1
Mitochondrial fission controls astrocyte morphogenesis and organization in the cortex.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202410130. Epub 2025 Sep 3.
3
Astrocyte-derived PTPRZ1 regulates astrocyte morphology and excitatory synaptogenesis.
bioRxiv. 2025 May 1:2025.04.30.651514. doi: 10.1101/2025.04.30.651514.
4
Cell-surface proteomic profiling identifies CD72 as a regulator of microglial tiling.
bioRxiv. 2025 Jun 5:2025.06.02.657480. doi: 10.1101/2025.06.02.657480.
7
Developmental roles of astrocytes in circuit wiring.
Curr Opin Neurobiol. 2025 Jun;92:103042. doi: 10.1016/j.conb.2025.103042. Epub 2025 May 13.
8
Regulation of synaptic function and lipid metabolism.
Neural Regen Res. 2026 Mar 1;21(3):1037-1057. doi: 10.4103/NRR.NRR-D-24-01412. Epub 2025 Apr 29.
10
Early-life growth and cellular heterogeneity in the short-lived African turquoise killifish telencephalon.
Biol Open. 2025 Apr 15;14(4). doi: 10.1242/bio.061984. Epub 2025 Apr 22.

本文引用的文献

1
A genome-wide library of MADM mice for single-cell genetic mosaic analysis.
Cell Rep. 2021 Jun 22;35(12):109274. doi: 10.1016/j.celrep.2021.109274.
2
SNT: a unifying toolbox for quantification of neuronal anatomy.
Nat Methods. 2021 Apr;18(4):374-377. doi: 10.1038/s41592-021-01105-7. Epub 2021 Apr 1.
3
Chemico-genetic discovery of astrocytic control of inhibition in vivo.
Nature. 2020 Dec;588(7837):296-302. doi: 10.1038/s41586-020-2926-0. Epub 2020 Nov 11.
6
Pediatric Epilepsy Mechanisms: Expanding the Paradigm of Excitation/Inhibition Imbalance.
Children (Basel). 2019 Feb 5;6(2):23. doi: 10.3390/children6020023.
7
U-Net: deep learning for cell counting, detection, and morphometry.
Nat Methods. 2019 Jan;16(1):67-70. doi: 10.1038/s41592-018-0261-2. Epub 2018 Dec 17.
8
Content-aware image restoration: pushing the limits of fluorescence microscopy.
Nat Methods. 2018 Dec;15(12):1090-1097. doi: 10.1038/s41592-018-0216-7. Epub 2018 Nov 26.
9
Glia as architects of central nervous system formation and function.
Science. 2018 Oct 12;362(6411):181-185. doi: 10.1126/science.aat0473.
10
Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1.
J Cell Biol. 2018 Oct 1;217(10):3747-3765. doi: 10.1083/jcb.201802057. Epub 2018 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验