Suppr超能文献

通过工程化钯亚纳米团簇实现加速质子耦合电子转移用于过氧化氢的规模化电合成

Accelerated Proton-Coupled Electron Transfer via Engineering Palladium Sub-Nanoclusters for Scalable Electrosynthesis of Hydrogen Peroxide.

作者信息

Li Yan, Liu Yingnan, Peng Xianyun, Zhao Zilin, Li Zhongjian, Yang Bin, Zhang Qinghua, Lei Lecheng, Dai Liming, Hou Yang

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413159. doi: 10.1002/anie.202413159. Epub 2024 Oct 30.

Abstract

Electrosynthesis of HO from oxygen reduction reaction via a two-electron pathway is vital as an alternative for the energy-intensive anthraquinone process. However, this process is largely hindered in neutral and alkaline conditions due to sluggish kinetics associated with the transformation of intermediate O* into OOH* via proton-coupled electron transfer sourced from slow water dissociation. Herein, we developed Pd sub-nanoclusters on the nickel ditelluride nanosheets (Pd SNCs/NiTe) to enhance the performance of HO electrosynthesis. The newly-developed Pd SNCs/NiTe exhibited a HO selectivity of as high as 99 % and a positive shift of onset potential up to 0.81 V. Combined theoretical calculations and experimental studies (e.g., X-ray absorption and attenuated total reflectance-Fourier transform infrared spectra measurements) revealed that the Pd sub-nanoclusters supported by NiTe nanosheets efficiently reduced the energy barrier of water dissociation to generate more protons, facilitating the proton feeding kinetics. When used in a flow cell, Pd SNCs/NiTe cathode efficiently produced HO with a maximum yield rate of 1.75 mmol h cm and a current efficiency of 95 % at 100 mA cm. Further, an accumulated HO concentration of 1.43 mol L was reached after 10 hours of continuous electrolysis, showing the potential for practical HO electrosynthesis.

摘要

通过双电子途径将氧还原反应电合成过氧化氢作为能源密集型蒽醌法的替代方法至关重要。然而,由于通过源自缓慢水离解的质子耦合电子转移将中间体O转化为OOH的动力学缓慢,该过程在中性和碱性条件下受到很大阻碍。在此,我们在二碲化镍纳米片上制备了钯亚纳米团簇(Pd SNCs/NiTe)以提高过氧化氢电合成的性能。新制备的Pd SNCs/NiTe表现出高达99%的过氧化氢选择性和高达0.81 V的起始电位正移。结合理论计算和实验研究(例如X射线吸收和衰减全反射-傅里叶变换红外光谱测量)表明,由碲化镍纳米片支撑的钯亚纳米团簇有效降低了水离解的能垒以产生更多质子,促进了质子供给动力学。当用于流动电池时,Pd SNCs/NiTe阴极在100 mA cm下以1.75 mmol h cm的最大产率和95%的电流效率高效生产过氧化氢。此外,连续电解10小时后达到了1.43 mol L的累积过氧化氢浓度,显示了实际过氧化氢电合成的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验