Suppr超能文献

通过超分子组装在固态下的同时环加成反应。

Simultaneous Cycloadditions in the Solid State via Supramolecular Assembly.

作者信息

Juneja Navkiran, George Gary C, Hutchins Kristin M

机构信息

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States.

Department of Chemistry, University of Missouri, 601 S College Ave, Columbia, Missouri, 65211, United States.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415567. doi: 10.1002/anie.202415567. Epub 2024 Nov 2.

Abstract

Chemical reactions conducted in the solid phase (specifically, crystalline) are much less numerous than solution reactions, primarily due to reduced motion, flexibility, and reactivity. The main advantage of crystalline-state transformations is that reactant molecules can be designed to self-assemble into specific spatial arrangements, often leading to high control over product regiochemistry and/or stereochemistry. In crystalline-phase transformations, typically only one type of reaction occurs, and a sacrificial template molecule is frequently used to facilitate self-assembly, similar to a catalyst or enzyme. Here, we demonstrate the first system designed to undergo two chemically unique and orthogonal cycloaddition reactions simultaneously within a single crystalline solid. Well-controlled supramolecular self-assembly of two molecules containing different reactive moieties affords orthogonal reactivity without use of a sacrificial template. Using only UV light, the simultaneous [2+2] and [4+4] cycloadditions are achieved regiospecifically, stereospecifically, and products are obtained in high yield, whereas a simultaneous solution-state reaction affords a mixture of isomers in low yield. Application of dually-reactive systems toward (supra)molecular solar thermal storage materials is also discussed. This work demonstrates fundamental chemical approaches for orthogonal reactivity in the crystalline state and highlights the complexity and reversibility that can be achieved with supramolecular design.

摘要

在固相(特别是晶体)中进行的化学反应比溶液反应少得多,这主要是由于运动、灵活性和反应活性降低。晶体状态转变的主要优点是反应物分子可以被设计成自组装成特定的空间排列,这通常能高度控制产物的区域化学和/或立体化学。在晶相转变中,通常只发生一种类型的反应,并且经常使用牺牲模板分子来促进自组装,这类似于催化剂或酶。在此,我们展示了首个被设计用于在单一晶体固体中同时进行两种化学性质独特且正交的环加成反应的体系。对含有不同反应性基团的两个分子进行良好控制的超分子自组装,无需使用牺牲模板即可提供正交反应性。仅使用紫外光,就能区域特异性、立体特异性地实现同时进行的[2+2]和[4+4]环加成反应,并且产物能以高产率获得,而同时进行的溶液态反应只能以低产率得到异构体混合物。还讨论了双反应体系在(超)分子太阳能蓄热材料中的应用。这项工作展示了在晶体状态下实现正交反应性的基本化学方法,并突出了超分子设计所能实现的复杂性和可逆性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验