Suppr超能文献

基于原子级工程化抗氧化单原子催化剂的无炎症电化学体内多巴胺传感。

Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst.

机构信息

College of Chemistry, Beijing Normal University, 100875, Beijing, China.

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.

出版信息

Nat Commun. 2024 Sep 10;15(1):7915. doi: 10.1038/s41467-024-52279-5.

Abstract

Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN exhibits the highest activity toward mimicking catalase and superoxide dismutase as well as eliminating hydroxyl radical, while also featuring high electrode reactivity toward dopamine oxidation. These dual functions endow the single-atom nanozyme-based sensor with anti-inflammatory capabilities, enabling accurate dopamine sensing in living male rat brain. This study provides an avenue for designing inflammation-free electrochemical sensing platforms with atomic-precision engineered single-atom catalysts.

摘要

电化学方法结合组织内植入的微电极为实时监测体内神经化学动力学提供了一个极好的平台,因为它们具有优越的时空分辨率、高选择性和灵敏度。然而,电极植入不可避免地会损伤脑组织,上调活性氧水平,并引发神经炎症反应,导致对神经化学事件的不可靠定量。在此,我们报告了一种多功能传感平台,用于具有原子级工程 Fe 单原子催化剂的无炎症体内分析,该催化剂既是具有抗氧化活性的单原子纳米酶,又是用于多巴胺氧化的电极材料。通过高温热解和催化性能筛选,我们制备了一系列具有不同配位构型的 Fe 单原子纳米酶,并发现具有 FeN 的 Fe 单原子纳米酶对模拟过氧化氢酶和超氧化物歧化酶以及消除羟基自由基表现出最高的活性,同时对多巴胺氧化也具有高电极反应性。这两种功能使基于单原子纳米酶的传感器具有抗炎能力,能够在雄性大鼠活体大脑中准确地检测多巴胺。这项研究为设计具有原子精度工程单原子催化剂的无炎症电化学传感平台提供了一种途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0906/11387648/d67adb8f045e/41467_2024_52279_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验