Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.
Nat Commun. 2024 Sep 10;15(1):7917. doi: 10.1038/s41467-024-52146-3.
Druggable pockets are protein regions that have the ability to bind organic small molecules, and their characterization is essential in target-based drug discovery. However, deriving pocket descriptors is challenging and existing strategies are often limited in applicability. We introduce PocketVec, an approach to generate pocket descriptors via inverse virtual screening of lead-like molecules. PocketVec performs comparably to leading methodologies while addressing key limitations. Additionally, we systematically search for druggable pockets in the human proteome, using experimentally determined structures and AlphaFold2 models, identifying over 32,000 binding sites across 20,000 protein domains. We then generate PocketVec descriptors for each site and conduct an extensive similarity search, exploring over 1.2 billion pairwise comparisons. Our results reveal druggable pocket similarities not detected by structure- or sequence-based methods, uncovering clusters of similar pockets in proteins lacking crystallized inhibitors and opening the door to strategies for prioritizing chemical probe development to explore the druggable space.
可成药口袋是指具有结合有机小分子能力的蛋白质区域,其特征描述在基于靶标的药物发现中至关重要。然而,衍生口袋描述符具有挑战性,并且现有策略在适用性方面往往受到限制。我们引入了 PocketVec,这是一种通过先导化合物的反向虚拟筛选生成口袋描述符的方法。PocketVec 的表现可与领先的方法相媲美,同时解决了关键的局限性。此外,我们使用实验确定的结构和 AlphaFold2 模型,系统地在人类蛋白质组中搜索可成药口袋,确定了 20000 个蛋白质结构域中的 32000 多个结合位点。然后,我们为每个位点生成 PocketVec 描述符,并进行广泛的相似性搜索,探索超过 12 亿对的两两比较。我们的结果揭示了结构或序列基方法无法检测到的可成药口袋相似性,揭示了缺乏结晶抑制剂的蛋白质中相似口袋的聚类,并为优先考虑化学探针开发以探索可成药空间的策略开辟了道路。