Suppr超能文献

通过结合位点描述符对人类可成药口袋进行全面检测和特征描述。

Comprehensive detection and characterization of human druggable pockets through binding site descriptors.

机构信息

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.

Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.

出版信息

Nat Commun. 2024 Sep 10;15(1):7917. doi: 10.1038/s41467-024-52146-3.

Abstract

Druggable pockets are protein regions that have the ability to bind organic small molecules, and their characterization is essential in target-based drug discovery. However, deriving pocket descriptors is challenging and existing strategies are often limited in applicability. We introduce PocketVec, an approach to generate pocket descriptors via inverse virtual screening of lead-like molecules. PocketVec performs comparably to leading methodologies while addressing key limitations. Additionally, we systematically search for druggable pockets in the human proteome, using experimentally determined structures and AlphaFold2 models, identifying over 32,000 binding sites across 20,000 protein domains. We then generate PocketVec descriptors for each site and conduct an extensive similarity search, exploring over 1.2 billion pairwise comparisons. Our results reveal druggable pocket similarities not detected by structure- or sequence-based methods, uncovering clusters of similar pockets in proteins lacking crystallized inhibitors and opening the door to strategies for prioritizing chemical probe development to explore the druggable space.

摘要

可成药口袋是指具有结合有机小分子能力的蛋白质区域,其特征描述在基于靶标的药物发现中至关重要。然而,衍生口袋描述符具有挑战性,并且现有策略在适用性方面往往受到限制。我们引入了 PocketVec,这是一种通过先导化合物的反向虚拟筛选生成口袋描述符的方法。PocketVec 的表现可与领先的方法相媲美,同时解决了关键的局限性。此外,我们使用实验确定的结构和 AlphaFold2 模型,系统地在人类蛋白质组中搜索可成药口袋,确定了 20000 个蛋白质结构域中的 32000 多个结合位点。然后,我们为每个位点生成 PocketVec 描述符,并进行广泛的相似性搜索,探索超过 12 亿对的两两比较。我们的结果揭示了结构或序列基方法无法检测到的可成药口袋相似性,揭示了缺乏结晶抑制剂的蛋白质中相似口袋的聚类,并为优先考虑化学探针开发以探索可成药空间的策略开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9437/11387482/b0fa6aa661c0/41467_2024_52146_Fig1_HTML.jpg

相似文献

4
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.
5
Clinical rating scales for assessing pain in newborn infants.
Cochrane Database Syst Rev. 2025 Apr 14;4(4):MR000064. doi: 10.1002/14651858.MR000064.pub2.
6
Interventions for fertility preservation in women with cancer undergoing chemotherapy.
Cochrane Database Syst Rev. 2025 Jun 19;6:CD012891. doi: 10.1002/14651858.CD012891.pub2.
7
Use of β-adrenoreceptor drugs and Parkinson's disease incidence in women from the French E3N cohort study.
J Parkinsons Dis. 2025 Apr 29:1877718X251330993. doi: 10.1177/1877718X251330993.
8
Systematic analysis of structural disorder in the minimal proteome of .
Microbiol Spectr. 2025 Jun 18:e0096825. doi: 10.1128/spectrum.00968-25.
10
Probiotics in infants for prevention of allergic disease.
Cochrane Database Syst Rev. 2025 Jun 13;6(6):CD006475. doi: 10.1002/14651858.CD006475.pub3.

引用本文的文献

1
Bag-of-words is competitive with sum-of-embeddings language-inspired representations on protein inference.
PLoS One. 2025 Aug 6;20(8):e0325531. doi: 10.1371/journal.pone.0325531. eCollection 2025.
2
ProCV: A 3D similarity grouping method for enhanced protein pocket recognition and ligand interaction analysis.
iScience. 2025 Mar 27;28(4):112305. doi: 10.1016/j.isci.2025.112305. eCollection 2025 Apr 18.
3
Comparative evaluation of methods for the prediction of protein-ligand binding sites.
J Cheminform. 2024 Nov 11;16(1):126. doi: 10.1186/s13321-024-00923-z.
4
Navigating a 1E+60 Chemical Space of Peptide/Peptoid Oligomers.
Mol Inform. 2025 Jan;44(1):e202400186. doi: 10.1002/minf.202400186. Epub 2024 Oct 10.

本文引用的文献

1
Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells.
Science. 2024 Apr 26;384(6694):eadk5864. doi: 10.1126/science.adk5864.
2
Discovery of a structural class of antibiotics with explainable deep learning.
Nature. 2024 Feb;626(7997):177-185. doi: 10.1038/s41586-023-06887-8. Epub 2023 Dec 20.
3
PoSSuM v.3: A Major Expansion of the PoSSuM Database for Finding Similar Binding Sites of Proteins.
J Chem Inf Model. 2023 Dec 11;63(23):7578-7587. doi: 10.1021/acs.jcim.3c01405. Epub 2023 Nov 28.
4
ATLAS: protein flexibility description from atomistic molecular dynamics simulations.
Nucleic Acids Res. 2024 Jan 5;52(D1):D384-D392. doi: 10.1093/nar/gkad1084.
5
The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1180-D1192. doi: 10.1093/nar/gkad1004.
6
Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors.
Nat Chem Biol. 2024 May;20(5):577-585. doi: 10.1038/s41589-023-01459-3. Epub 2023 Oct 30.
7
Computational approaches streamlining drug discovery.
Nature. 2023 Apr;616(7958):673-685. doi: 10.1038/s41586-023-05905-z. Epub 2023 Apr 26.
8
Illuminating the Chemical Space of Untargeted Proteins.
J Chem Inf Model. 2023 May 8;63(9):2689-2698. doi: 10.1021/acs.jcim.2c01364. Epub 2023 Apr 19.
9
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
10
Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery.
J Chem Inf Model. 2023 Mar 27;63(6):1656-1667. doi: 10.1021/acs.jcim.2c01219. Epub 2023 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验